分层身份基广播加密(HIBBE)技术详解
1. 相关假设与定义
在介绍分层身份基广播加密(HIBBE)系统之前,先了解几个重要的假设。设 (N = p_1p_2p_3),(G) 和 (G_T) 是阶为 (N) 的群,(e: G \times G \to G_T) 是双线性映射。为方便描述,用 (G_{p_ip_j}) 表示 (G) 中阶为 (p_ip_j) 的子群。
- 假设 1 :给定 (D_1 \leq (g, X_3)) 作为输入,其中 (g \stackrel{R}{\leq} G_{p_1}) 是 (G_{p_1}) 的随机生成元,(X_3 \stackrel{R}{\leq} G_{p_3}) 是 (G_{p_3}) 中的随机元素,判断 (T) 是 (G_{p_1p_2}) 中的随机元素,还是 (G_{p_1}) 中的随机元素。算法 (A) 输出 (b \in {0, 1}) 解决该假设的优势定义为:
[Adv_{1A}(\chi) = \left|Pr\left[A\left(D_1, T \stackrel{R}{\leq} G_{p_1p_2}\right) = 1\right] - Pr\left[A\left(D_1, T \stackrel{R}{\leq} G_{p_1}\right) = 1\right]\right|]
假设 1 表明,对于所有多项式时间算法 (A),(Adv_{1A}(\chi)) 是可忽略的。
- 假设 2 :设 (g \stackrel{R}{\leq} G_{p_1}) 是 (G_{p_1}) 的随机生成元,选择随机元素 (X_1 \stackrel{
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



