6.PCA(主成分分析)

PCA(主成分分析)

一、PCA用于降维,保留最重要的K个特征,降维的目的

    1)使数据易于处理

    2)去除噪声

    3)较低计算的开销

    4)使结果更容易理解

二、PCA的具体流程

    1)去平均值,即每一维特征减去各自的平均值(即让数据点中心化)

    2)计算协方差矩阵(即X * X的转置)。协方差是度量两个随机变量关系的统计量,即用协方差衡量不同维度特征之间的相关性

    3)计算协方差矩阵的特征值与特征向量

    4)对特征值从大到小排序。特征值大小表示的是该维度特征的重要性级别,即维度所包含的信息量的大小

    5)保留最大的k个特征值对应的特征向量

    6)将数据乘以k个特征向量,以把数据转换到构建的新空间中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值