传统的机器学习算法
WangXu__
这个作者很懒,什么都没留下…
展开
-
1.感知机
感知机一、感知机概述 感知机是应用于二分类线性可分问题的分类器。目的在于找到一个分离超平面,能够正确分类训练集中的所有正负样本点。二、目标函数及参数优化2.1 前向运算 由输入空间(特征空间)到输出空间的函数为:f(X)=sign(WX+b) 其中...原创 2019-07-18 16:21:22 · 692 阅读 · 0 评论 -
2.KNN(k近邻)
KNN(k近邻)一、KNN概述 KNN一般是用于分类的机器学习方法 KNN中重要的三个步骤为: 1、K值的选择  ...原创 2019-07-19 16:02:18 · 221 阅读 · 0 评论 -
3.朴素贝叶斯
朴素贝叶斯一、朴素贝叶斯概述 朴素贝叶斯是基于贝叶斯定理和特征条件独立假设方法的分类方法。即根据先验概率和条件概率求后验概率。. 之所以叫朴素是因为不同维度的特征之间相互独立,若不同维度之间有了依存关系则称为贝叶斯网络。 朴素贝叶斯分类,即判断所计算的后...原创 2019-07-22 11:03:49 · 317 阅读 · 0 评论 -
4.决策树
决策树一、决策树概述 训练阶段,根据训练数据构造决策树模型;在测试阶段,对数据进行分类。 决策树重要的三个阶段:1.特征的选择 2.决策树的生成 3.决策树剪枝 决策树内部节点表示特征或者属性,叶节点表示类别。 ...原创 2019-07-22 11:42:35 · 334 阅读 · 0 评论 -
5.logistic回归
logistic回归一、logistic回归所用到的激活函数为sigmoid函数: 二、二分类的逻辑斯蒂回归为: 一件事情发生的几率为该事件发生的概率与不发生的概率的比值 三、计算逻辑斯蒂回归的目标函数:即求对于所有样本点,其估计正确概率最大的使得L(W)最大值的W 二分类问题...原创 2019-07-22 14:47:06 · 361 阅读 · 0 评论 -
6.PCA(主成分分析)
PCA(主成分分析)一、PCA用于降维,保留最重要的K个特征,降维的目的 1)使数据易于处理 2)去除噪声 3)较低计算的开销 4)使结果更容易理解二、PCA的具体流程  ...原创 2019-07-22 15:15:31 · 478 阅读 · 0 评论 -
7.k-means,k-mean++,ISODATA
k-means,k-mean++,ISODATA一、k-means 步骤: 1)k-means算法在开始的时候就首先固定K个类别,并且随机选出对应的K个点,作为K个类。 2)然后对剩余所有的点进行分类,再对每个类中所有的点对应维度相加取平均值求质心,把该...原创 2019-07-22 16:24:28 · 778 阅读 · 0 评论