npz文件读取

这篇博客介绍了如何使用Numpy和Scipy库在Python中加载和读取.npyz文件。通过`numpy.load`可以查看文件内容,而`data['data']`用于读取数据。对于Scipy,可以利用`scipy.sparse.load_npz`加载数据,然后通过`.data`属性获取数据。文章还提供了详细的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Numpy方式

  • npz文件加载
import numpy as np
data = np.load('xxx.npz')
  • 查看文件
    以npz结尾的数据集是压缩文件,里面还有其他的文件,需要用命令进行查看。
data.files
  • 对数据集进行读取
data['data']

在这里插入图片描述

Scipy方式

from scipy.sparse import load_npz
data_s = load_npz('xxx.npz')
data_s.data

在这里插入图片描述

参考资料
Python中.npz文件的读取

### 加载和处理图像 npz 文件 为了使用 Python 和 NumPy 处理 `.npz` 文件中的图像数据,可以采用如下方法: #### 使用 `numpy.load()` 函数读取 .npz 文件 `.npz` 是一种压缩存档文件格式,通常用于存储多个数组。通过调用 `numpy.load()` 可以方便地加载此类文件。 ```python import numpy as np # 假设有一个名为 'images.npz' 的文件 data = np.load('images.npz') # 查看该档案内含有的键名(即各个数组的名字) print(data.files) for file_name in data.files: array_data = data[file_name] # 输出每个数组的形状信息 print(f"{file_name}: {array_data.shape}") ``` 上述代码片段展示了如何获取 `.npz` 文件内的所有项,并打印它们各自的名称及其对应的数组尺寸[^3]。 一旦获得了所需的特定数组之后,就可以像对待常规 NumPy 数组一样对其进行各种变换操作了。比如调整色彩通道顺序来适应不同库的要求——这可以通过简单的切片实现: ```python def convert_color_order(image_array, from_format='bgr', to_format='rgb'): """ 将给定的颜色空间转换为目标颜色空间 参数: image_array (ndarray): 输入图像数组. from_format (str): 当前颜色模式 ('bgr' 或者 'rgb'). to_format (str): 目标颜色模式 ('bgr' 或者 'rgb'). 返回值: ndarray: 转换后的图像数组. """ if from_format.lower() == "bgr" and to_format.lower() == "rgb": return image_array[..., ::-1].copy() elif from_format.lower() == "rgb" and to_format.lower() == "bgr": return image_array[..., ::-1].copy() else: raise ValueError("Unsupported color formats") # 应用函数实例化 converted_image = convert_color_order(array_data) ``` 此部分利用了一个辅助函数来进行 BGR 到 RGB 或反之亦然的颜色通道重排工作[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值