理解矩阵by孟岩--学习笔记

空间(space)

三维空间特点

  • 由很多(实际上是无穷多个)位置点组成(空间基础)
  • 这些点之间存在相对的关系(空间基础)
  • 可以在空间中定义长度、角度(太特殊,其他空间不需要具备,不是关键的性质)
  • 这个空间可以容纳运动,这里的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的“连续”性的运动(空间的本质)

空间扩展

不管是什么空间,都必须容纳和支持在其中发生的符合规则的运动(变换)。在某种空间中往往会存在一种相对应的变换,比如拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间有仿射变换,其实这些变换都只不过是对应空间中允许的运动形式而已。

空间是容纳运动的一个对象集合,而变换规则则规定了对应空间的运动。

线性空间

对象集合

线性空间中的任何一个对象,通过选取基和坐标的办法,都可以表达为向量的形式。

L1最高次项不大于n次的多项式的全体构成一个线性空间,也就是说,这个线性空间中的每一个对象是一个多项式。如果以 x 0 x^{0} x0 x 1 x^{1} x1,…, x n x^{n} xn为基,那么任何一个这样的多项式都可以表达为一组n+1维向量,其中的每一个分两 a i a_{i} ai其实就是多项式中 x ( i − 1 ) x^{(i-1)} x(i1)项的系数。基的选取有多种办法,只要所选取的那一组基线性无关就可以。

向量是有序性的,可以表示线性空间里任何一个对象。

线性空间中的运动

线性空间中的运动,被称为线性变换。也就是说,从线性空间中的一个点运动到任意的另外一个点,都可以通过一个线性变化来完成。在线性空间中,选定一组基之后,不仅可以用一个向量来描述空间中的任何一个对象,而且可以用矩阵来描述该空间中的任何一个运动(变换)。而使某个对象发生对应运动的方法,就是用代表那个运动的矩阵,乘以代表那个对象的向量。

简而言之,在线性空间中选定基之后,向量刻画对象,矩阵刻画对象的运动,用矩阵与向量的乘法施加运动。

矩阵的本质是运动的描述,向量本身也可以看成是nx1的矩阵。一个空间中的对象和运动可以用相类同的方式表示。

同一变换,在不同的坐标系下表现为不同的矩阵,但是它们的本质是一样的,所以本征值相同。

参考资料

  1. 理解矩阵(一)
  2. 理解矩阵(二)
  3. 理解矩阵(三)
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值