深度学习
文章平均质量分 75
於無聲處聽驚雷
專注于高性能圖形工作站
展开
-
深度学习训练与推理---台式、便携式、机架式、集群硬件配置推荐2022
21世纪计算机最大挑战—深度学习、人工智能,它帮助更多领域的应用研究获取质的进展,计算机视觉、语音识别、自动机器翻译、自动驾驶汽车、药物发现、生物信息、医学诊断、视频游戏、围棋、智能电网…不怕千招会,就怕一招绝,对于科研人员一旦通过深度学习技术在某一个应用领域有所成就,就会获取最大的机会。西安坤隆计算机公司2008年进入工作站领域,专注于计算应用的最快计算硬件架构,针对深度学习GPU超算的不同环境、不同计算规模等等,提供更专业匹配、与时俱进的计算设备:图灵超算工作站(台式)图灵超算服务器(机架原创 2022-02-08 14:49:31 · 3093 阅读 · 0 评论 -
分子动力模拟、生物信息、深度学习训练、推理超级计算机
UltraLAB GX650M -T1/T2是一款内置双Xeon3代处理器(高频+16通道)+8块nvidia A6000 48GB的静音超算工作站,无论是数据预处理还是神经元计算,还是海量数据,都能在每个环节的计算性能表现,更均衡、完美,强大算力发挥到极致。原创 2022-02-08 14:15:47 · 1234 阅读 · 0 评论 -
NVIDIA RTX A6000/RTX3090/3080/3070深度学习训练/GPU服务器硬件配置推荐2021
本方案中,推荐配置报价更新日期:2021/03/06变更原因:1)近期唯利是图的厂家将RTX显卡大部分卖给挖矿的,造成断货、暴涨2)RTX A6000上市、增加新GPU配置方案3)GX630M保证6块GPU卡全部在Pcie 16X(6个 16x)带宽,而不是市场其他品牌机型是4个16x+2个8xnvidia的 Ampere架构-RTX 3090上市,该卡是第一个拥有超1万个流处理器的最强算力GPU卡,由于该卡外形尺寸巨大,长度达313mm,厚度3个槽,另外功耗到350w,常规GP..原创 2021-04-29 16:29:33 · 9217 阅读 · 1 评论 -
最新最全深度学习训练/GPU服务器硬件配置推荐2020
人工智能随着核心算法、计算能力的迅速提升,以及海量联网数据的支持,在本世纪终于迎来了质的飞跃,人工智能将是未来应用最广泛的技术之一,在市场经济领域带来更多的机遇与机会,在医学领域可以大大加快诊断速度和准确性,在军事领域人工智能武器将成为未来武器的王牌……(一)了解深度学习算法深度学习两个主要过程:训练(Training)和推理(Inference)。其中:训练(Training)是将大量数据加载...原创 2020-04-08 11:14:37 · 12670 阅读 · 0 评论 -
最快最全深度学习训练/GPU服务器硬件配置推荐2019
如今,深度学习应用越来广泛、深入,例如安防:人脸识别、指纹识别...汽车驾驶:自动无人驾驶 ...翻译 语音识别、机器翻译...医学:医疗图像诊断...金融:量化策略交易...逻辑分析:围棋AI、游戏AI...随着计算规模巨大,一个合理、高效率、高性能GPU硬件配置架构服务器,变得至关重要目前主流硬件配置 intel处理器+ nvidia GPU计算卡,但进入201...原创 2019-07-19 12:30:35 · 3363 阅读 · 0 评论 -
Quadro RTX\GeForce RTX已来,来了解一下深度学习到底要用什么样的GPU
深度学习服务器工作站恐怕最纠结的就是GPU的选择,下面我整理出目前NVIDIA GPU的技术参数:深度学习需要用到GPU的参数有:1,单精度---深度学习只需要单精度,昂贵的双精度卡适合科学计算2,CUDA处理器---越多越好,无需解释3,张量处理单元(Tensor Core)---也是越多越好所以,最新GeForce RTX 2080Ti\GeForce RTX 2080...原创 2018-09-30 12:23:02 · 7915 阅读 · 0 评论 -
史上最新最全的深度学习计算机硬件配置方案
引子市场上用于深度学习训练计算机大致情况如下:(1)服务器/工作站(支持2、4、8块GPU架构):普遍存在噪音大,无法放置于办公环境,必须放到专门的机房,维护成本高,另外数据存储带宽、延迟、容量也不尽如意。(2)分布式集群架构:性能强大,但是开发成本太高(太贵),是大多数科研单位及个人无法承受。(3)组装电脑:这类特点是价格便宜,但是在散热和功率方面依然是普通家用/游戏电脑标准,稳定性巨差。(4)...原创 2018-04-09 17:44:47 · 22215 阅读 · 1 评论 -
深度学习环境搭建之CentOS 7+NVIDIA GPU+CUDA8.0+CUDNN6.0+TensorFlow
最近在ultralab GX480i测试了一下CentOS7 Deep Learning TensorFlow,其中也是踩坑无数,今整理安装过程发出来,希望大家安装的时候可以参考一下,不用浪费太多的时间在安装配置上,而是把有限的时间用到代码上一,安装显卡驱动网上搜索的驱动安装大都是手动编译安装,既:安装编译环境--到官网下载驱动文件*.run--blacklist nouveau,#blackli...原创 2018-03-24 12:59:54 · 2894 阅读 · 5 评论 -
全能科研利器---新一代GPU超级计算平台配置方案
(一)为什么要有异构超级计算机 目前并行计算已渐成主流,尽管CPU以通用性高仍然为主要计算手段,但由深度学习、无人车驾驶、分子模拟计算等,以GPU计算为主的应用也越来越广泛。两个计算架构各有独自优势,计算速度呈现几何级提升。随着很多科学计算、仿真计算的算法不断完善,单纯依靠单一CPU或者GPU的强大,效率仍然无法提高。如果配备一台拥有CPU+GPU混合计算能力的超算系统,那么求解就会更快...原创 2018-03-06 10:20:18 · 2782 阅读 · 0 评论 -
Ubuntu16.04深度学习环境之TensorFlow1.4CPU/GPU安装实测
由于目前很多TensorFlow初学者在安装时候遇见各种坑,下面亲测很顺利通过,希望对大家有帮助。一.安装ubuntu本次使用16.04.4,u盘做好安装盘,需要注意一些机器在安装界面跳出的时候需按“E”,选择语言,然后F6选择“nomodeset”,然后“install ubuntu”。安装完成后更新,先更换ubuntut的源,这样在以后安装的过程可以节省很多时间!终端输入cd /etc/apt...原创 2018-03-14 18:43:33 · 1012 阅读 · 0 评论