https://blog.csdn.net/qq_32919451/article/details/80643118?utm_medium=distribute.pc_relevant.none-task-blog-2defaultbaidujs_title~default-1.no_search_link&spm=1001.2101.3001.4242
【问题描述】
给定n个矩阵{A1,A2,…,An}
,其中Ai与Ai+1是可乘的,i=1,2…,n-1
。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。例如,给定三个连乘矩阵{A1,A2,A3}的维数分别是10100,1005和550,采用(A1A2)A3,乘法次数为101005+10550=7500次,而采用A1(A2A3),乘法次数为100550+10100*50=75000次乘法,显然,最好的次序是(A1A2)A3,乘法次数为7500次。
分析:
矩阵链乘法问题描述:
给定由n个矩阵构成的序列{A1,A2,…,An},对乘积A1A2…An,找到最小化乘法次数的加括号方法。
1)寻找最优子结构
此问题最难的地方在于找到最优子结构。对乘积A1A2…An的任意加括号方法都会将序列在某个地方分成两部分,也就是最后一次乘法计算的地方
,我们将这个位置记为k
,也就是说首先计算A1...Ak
和Ak+1...An
,然后再将这两部分的结果相乘
。
最优子结构如下:假设A1A2…An的一个最优加括号把乘积在Ak和Ak+1间分开,则前缀子链A1…Ak的加括号方式必定为A1…An的一个最优加括号,后缀子链同理。
开始并不知道k的确切位置,需要遍历所有位置以保证找到合适的k来分割乘积。
2)构造递归解
- m[i][j] 表示A[i:j]的计算量 ;
- A[i:k]的计算量为m[i][k];
- A[k+1 : j]的计算量为m[k+1][j]
因此,m[i][j] = m[i][k] + m[k+1][j] + p[i-1] * p[i] * p[j];
因为i、j是矩阵的下标所以是大于0的,比如矩阵是A1-A6 i=1,j=6
其中p是每个矩阵的行数和列数如下图
(p[i-1] * p[i] * p[j]:最后两个矩阵的计算量)
此时i=1,j=6
假设 此时k的位置(括号的位置)在p3,所以计算量就是min(m[1][3]+m[4][6]+p[0]p[3]p[6])
计算顺序
矩阵A1-A6,可以看出k的范围在p1-p5
间
i=1,j=6,n=6,所以k的范围i<=k<j-1
#include<iostream>
using namespace std;
const int N=7;
//p为矩阵链,p[0],p[1]代表第一个矩阵的行数和列数,p[1],p[2]代表第二个矩阵的行数和列数......length为p的长度
//所以如果有六个矩阵,length=7,m为存储最优结果的二维矩阵,s为存储选择最优结果路线的
//二维矩阵
void MatrixChainOrder(int *p,int m[N][N],int s[N][N],int length)
{
int n=length-1;
int l,i,j,k,q=0;
//m[i][i]只有一个矩阵,所以相乘次数为0,即m[i][i]=0;
for(i=1;i<length;i++)
{
m[i][i]=0;
}
//l表示矩阵链的长度
// l=2时,计算 m[i,i+1],i=1,2,...,n-1 (长度l=2的链的最小代价)
// 就算m[i,i+l-1]代价(比如长度4,是A2-A5 所以j=i+l-1) 所以i+(l-1)<=n
for(l=2;l<=n;l++)
{
for(i=1;i<=n-l+1;i++)
{
j=i+l-1; //以i为起始位置,j为长度为l的链的末位,
m[i][j]=0x7fffffff;
//16进制的max,初始化,如果这个值没有被覆盖掉说明肯定最终结果就没有走它
//k从i到j-1,以k为位置划分,在本题k的范围是p1-p5
for(k=i;k<=j-1;k++)
{
q=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
if(q<m[i][j])//如果比这个值小,则覆盖
{
m[i][j]=q;
s[i][j]=k;//保存k的位置
}
}
}
}
cout << m[1][N-1] << endl;//最优的结果放在最后一个数组中
}
void PrintAnswer(int s[N][N],int i,int j)
{
if(i==j)
{
cout<<"A"<<i;
}
else
{
cout<<"(";
PrintAnswer(s,i,s[i][j]);//矩阵A1-Ak
PrintAnswer(s,s[i][j]+1,j);//矩阵Ak+1-Aj
cout<<")";
}
}
int main()
{
int p[N]={30,35,15,5,10,20,25};
int m[N][N],s[N][N];
MatrixChainOrder(p,m,s,N);
PrintAnswer(s,1,N-1);
return 0;
}