矩阵连乘思路

https://blog.csdn.net/qq_32919451/article/details/80643118?utm_medium=distribute.pc_relevant.none-task-blog-2defaultbaidujs_title~default-1.no_search_link&spm=1001.2101.3001.4242

【问题描述】

给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。例如,给定三个连乘矩阵{A1,A2,A3}的维数分别是10100,1005和550,采用(A1A2)A3,乘法次数为101005+10550=7500次,而采用A1(A2A3),乘法次数为100550+10100*50=75000次乘法,显然,最好的次序是(A1A2)A3,乘法次数为7500次。

分析:

矩阵链乘法问题描述:
给定由n个矩阵构成的序列{A1,A2,…,An},对乘积A1A2…An,找到最小化乘法次数的加括号方法。

1)寻找最优子结构

此问题最难的地方在于找到最优子结构。对乘积A1A2…An的任意加括号方法都会将序列在某个地方分成两部分,也就是最后一次乘法计算的地方,我们将这个位置记为k,也就是说首先计算A1...AkAk+1...An,然后再将这两部分的结果相乘
最优子结构如下:假设A1A2…An的一个最优加括号把乘积在Ak和Ak+1间分开,则前缀子链A1…Ak的加括号方式必定为A1…An的一个最优加括号,后缀子链同理。

开始并不知道k的确切位置,需要遍历所有位置以保证找到合适的k来分割乘积。

2)构造递归解

在这里插入图片描述

  • m[i][j] 表示A[i:j]的计算量 ;
  • A[i:k]的计算量为m[i][k];
  • A[k+1 : j]的计算量为m[k+1][j]

因此,m[i][j] = m[i][k] + m[k+1][j] + p[i-1] * p[i] * p[j];

因为i、j是矩阵的下标所以是大于0的,比如矩阵是A1-A6 i=1,j=6
其中p是每个矩阵的行数和列数如下图
在这里插入图片描述

(p[i-1] * p[i] * p[j]:最后两个矩阵的计算量)
此时i=1,j=6
假设 此时k的位置(括号的位置)在p3,所以计算量就是min(m[1][3]+m[4][6]+p[0]p[3]p[6])

计算顺序
在这里插入图片描述
矩阵A1-A6,可以看出k的范围在p1-p5
i=1,j=6,n=6,所以k的范围i<=k<j-1

在这里插入图片描述

#include<iostream>
using namespace std;
 
const int N=7;
//p为矩阵链,p[0],p[1]代表第一个矩阵的行数和列数,p[1],p[2]代表第二个矩阵的行数和列数......length为p的长度
//所以如果有六个矩阵,length=7,m为存储最优结果的二维矩阵,s为存储选择最优结果路线的
//二维矩阵
void MatrixChainOrder(int *p,int m[N][N],int s[N][N],int length)
{
    int n=length-1;
    int l,i,j,k,q=0;
    //m[i][i]只有一个矩阵,所以相乘次数为0,即m[i][i]=0;
    for(i=1;i<length;i++)
    {
        m[i][i]=0;
    }
    //l表示矩阵链的长度
    // l=2时,计算 m[i,i+1],i=1,2,...,n-1 (长度l=2的链的最小代价)
    //    就算m[i,i+l-1]代价(比如长度4,是A2-A5 所以j=i+l-1) 所以i+(l-1)<=n
    for(l=2;l<=n;l++)
    {
        for(i=1;i<=n-l+1;i++)
        {
            j=i+l-1; //以i为起始位置,j为长度为l的链的末位,
            m[i][j]=0x7fffffff;
            //16进制的max,初始化,如果这个值没有被覆盖掉说明肯定最终结果就没有走它
            //k从i到j-1,以k为位置划分,在本题k的范围是p1-p5
            for(k=i;k<=j-1;k++)
            {
                q=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
                if(q<m[i][j])//如果比这个值小,则覆盖
                {
                    m[i][j]=q;
                    s[i][j]=k;//保存k的位置
                }
            }
        }
    }
    cout << m[1][N-1] << endl;//最优的结果放在最后一个数组中
}
void PrintAnswer(int s[N][N],int i,int j)
{
    if(i==j)
    {
        cout<<"A"<<i;
    }
    else
    {
        cout<<"(";
        PrintAnswer(s,i,s[i][j]);//矩阵A1-Ak  
        PrintAnswer(s,s[i][j]+1,j);//矩阵Ak+1-Aj 
        cout<<")";
    }
}
int main()
{
    int p[N]={30,35,15,5,10,20,25};
    int m[N][N],s[N][N];
    MatrixChainOrder(p,m,s,N);
    PrintAnswer(s,1,N-1);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值