设置dropout参数技巧

决定dropout之前,需要先判断是否模型过拟合

先dropout=0, 训练后得到模型的一些指标(比如: F1, Accuracy, AP)。比较train数据集和test数据集的指标。

过拟合:尝试下面的步骤。
欠拟合:尝试调整模型的结构,暂时忽略下面步骤。
dropout设置成0.4-0.6之间, 再次训练得到模型的一些指标。

如果过拟合明显好转,但指标也下降明显,可以尝试减少dropout(0.2)
如果过拟合还是严重,增加dropout(0.2)
重复上面的步骤多次,就可以找到理想的dropout值了。

https://zhuanlan.zhihu.com/p/77609689
注:dropout过大是容易欠拟合。

  • 16
    点赞
  • 80
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于Transformer模型的超参数优化,以下是一些常用的超参数和优化技巧: 1. 学习率(learning rate):学习率决定了模型在每次参数更新时的步长。通常,可以从一个较小的初始学习率开始,然后逐渐减小学习率,以提高模型的收敛性。可以使用学习率调度器(如学习率衰减或动态学习率)来自动调整学习率。 2. 批量大小(batch size):批量大小决定了在每次参数更新时使用的样本数量。较大的批量大小可以提高训练速度,但可能会降低模型的泛化性能。通常,可以通过尝试不同的批量大小来找到一个适当的值。 3. 注意力头数(number of attention heads):注意力头数决定了Transformer中多头自注意力机制中的注意力头的数量。增加注意力头数可以提高模型的表示能力,但也会增加计算成本。通常,可以在一定范围内尝试不同的头数,并选择一个合适的值。 4. 编码器和解码器层数(number of encoder/decoder layers):编码器和解码器层数决定了Transformer中编码器和解码器的层数。增加层数可以提高模型的表示能力,但也会增加计算成本。可以通过探索不同的层数来找到一个平衡点。 5. 正则化(regularization):正则化技术(如L1正则化、L2正则化、Dropout等)可以用于减少模型的过拟合。可以尝试不同的正则化方法和参数,并根据验证集的性能选择最佳的正则化设置。 6. 初始化策略(initialization strategy):合适的参数初始化策略可以帮助模型更快地收敛并提高性能。可以尝试不同的初始化方法,并根据模型的表现选择最佳的初始化策略。 7. 注意力机制类型(type of attention mechanism):Transformer中有多种注意力机制类型可供选择,如自注意力(self-attention)、相对位置编码(relative position encoding)等。可以尝试不同的注意力机制类型,并选择适合任务的最佳类型。 8. 模型大小(model size):增加模型的大小(参数数量)可以提高模型的表示能力,但也会增加计算和存储成本。可以根据任务复杂度和可用资源来选择适当的模型大小。 在实践中,通常需要进行超参数搜索和交叉验证来找到最佳的超参数组合。可以使用网格搜索、随机搜索、贝叶斯优化等技术来进行超参数优化。此外,还可以使用自动化的超参数优化工具(如Optuna、Hyperopt等)来简化超参数搜索的过程。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值