设置dropout参数技巧

决定dropout之前,需要先判断是否模型过拟合

先dropout=0, 训练后得到模型的一些指标(比如: F1, Accuracy, AP)。比较train数据集和test数据集的指标。

过拟合:尝试下面的步骤。
欠拟合:尝试调整模型的结构,暂时忽略下面步骤。
dropout设置成0.4-0.6之间, 再次训练得到模型的一些指标。

如果过拟合明显好转,但指标也下降明显,可以尝试减少dropout(0.2)
如果过拟合还是严重,增加dropout(0.2)
重复上面的步骤多次,就可以找到理想的dropout值了。

https://zhuanlan.zhihu.com/p/77609689
注:dropout过大是容易欠拟合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值