动态规划:目标和/一和零

494. 目标和

在这里插入图片描述
思路:
既然为target,那么就一定有 left组合 - right组合 = target。

left + right等于sum,而sum是固定的。

公式来了, left - (sum - left) = target -> left = (target + sum)/2

target是固定的,sum是固定的,left就可以求出来。

此时问题就是在集合nums中找出和为left的组合。

if ((target + sum) % 2 == 1) return 0; // 此时没有方案
if (abs(target) > sum) return 0; // 此时没有方案

再回归到01背包问题,为什么是01背包呢?

因为每个物品(题目中的1)只用一次!

这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。

本题则是装满有几种方法。其实这就是一个组合问题了。

  • 1确定dp数组以及下标的含义 dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法

    其实也可以使用二维dp数组来求解本题,dp[i][j]:使用 下标为[0,
    i]的nums[i]能够凑满j(包括j)这么大容量的包,有dp[i][j]种方法。

  • 2确定递推公式 有哪些来源可以推出dp[j]呢?

    不考虑nums[i]的情况下,填满容量为j - nums[i]的背包,有dp[j - nums[i]]种方法。

    那么只要搞到nums[i]的话,凑成dp[j]就有dp[j - nums[i]] 种方法。

    例如:dp[j],j 为5,

    已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 dp[5]。 已经有一个2(nums[i]) 的话,有 dp[3]种方法
    凑成 dp[5]。 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 dp[5] 已经有一个4(nums[i]) 的话,有
    dp[1]中方法 凑成 dp[5] 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 dp[5]
    那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。

dp[j] += dp[j - nums[i]]
  • 3 dp数组如何初始化 从递归公式可以看出,在初始化的时候dp[0]
    一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递归结果将都是0。

    dp[0] = 1,理论上也很好解释,装满容量为0的背包,有1种方法,就是装0件物品。

    dp[j]其他下标对应的数值应该初始化为0,从递归公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j -nums[i]]推导出来。

  • 4 确定遍历顺序 在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲过对于01背包问题一维dp的遍历,nums放在外循环,target在内循环,且内循环倒序

5 举例推导dp数组
输入:nums: [1, 1, 1, 1, 1], target: 3

bagSize = (target + sum) / 2 = (3 + 5) / 2 = 4
class Solution:
    def findTargetSumWays(self, nums: List[int], target: int) -> int:
        sumv = sum(nums)
        # 注意边界条件为 target>sumValue or target<-sumValue or  (sumValue + target) % 2 == 1
        if abs(target) > sumv or (target + sumv) % 2 == 1: return 0
        bagsize = (target + sumv) // 2
        dp = [0] * (bagsize + 1)
        dp[0] = 1

        for i in range(len(nums)):
            for j in range(bagsize, nums[i] - 1, -1):
                dp[j] += dp[j - nums[i]]
                #print(i,nums[i], j, dp[j])
        return dp[bagsize]

474.一和零

在这里插入图片描述
类似于01背包,只不过背包容量多了两个维度m和n 之前是只有bagsize的维度

  1. 确定dp数组(dp table)以及下标的含义 dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]。
  2. 确定递推公式 dp[i][j] 可以由前一个str里的字符串推导出来,strs里的一个str字符串有zeroNum个0,oneNum个1。dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。

然后我们在遍历的过程中,取dp[i][j]的最大值。

所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);

此时大家可以回想一下01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

对比一下就会发现,字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])。

这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。

  1. dp数组如何初始化 在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new
    window)中已经讲解了,01背包的dp数组初始化为0就可以。

    因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。

  2. 确定遍历顺序 在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new
    window)中,我们讲到了01背包为什么一定是外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!

那么本题也是,物品就是strs里的字符串,背包容量就是题目描述中的m和n。

  1. 举例推导dp数组

 class Solution:
    def findMaxForm(self, strs: List[str], m: int, n: int) -> int:
        # dp[i][j] 表示i个0 j个1的最大子集数 m行n列
        dp = [[0] * (n + 1) for _ in range(m + 1)]
        
          
        for str in strs:
            # 遍历每个字符串(物品) 并计算每个str的0个数 1个数
            zeronum = str.count('0')
            onenum = str.count('1')

            # 遍历(背包容量)m和n两个维度
            for i in range(m, zeronum - 1, -1):
                for j in range(n, onenum - 1, -1):
                    # 类比dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
                    # 如果选当前字符串 还剩下i - zeronum 个1 ,j - onenum 个0 ,子集数加1
                    dp[i][j] = max(dp[i][j], dp[i - zeronum][j - onenum] + 1)

        return dp[-1][-1]
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值