基于斜率模式谱与手部交互特征的人类活动识别研究
在计算机视觉和人工智能领域,人类活动识别(HAR)是一个具有挑战性且重要的研究方向,其在环境辅助生活(AAL)等领域有着广泛的应用前景。本文将介绍两种不同的人类活动识别方法,分别是基于斜率模式谱(SPS)的人类动作识别方法,以及利用深度卷积网络检测手部信息来识别日常生活活动(ADL)的方法。
基于斜率模式谱的人类动作识别
1. K近邻分类器
在人类动作识别方法中,分类是重要的一部分,它对HAR的性能起着关键作用。这里选择K近邻(KNN)分类器,因为与其他机器学习算法相比,它易于实现。而且,从SPS算法中提取的特征非常适合KNN分类器,无需进行降维技术来避免分类器受到维度灾难的影响。
2. 实验设置
- 数据集 :使用KTH数据集进行方法性能评估,该数据集是HAR中常用的基准数据集之一。它包含25个受试者在四种不同条件下执行六种人类动作的2391个序列,动作包括拳击、挥手、拍手、慢跑、跑步和行走。序列在均匀背景下以25fps的帧率拍摄,经过下采样后空间分辨率为160×120像素,平均长度为4秒。
- 特征提取 :对每个动作视频序列进行处理以生成运动历史图像(MHI)。MHI计算的参数对于捕捉相关运动信息至关重要,这里采用参数(τ, ϵ, δ) = (255, 40, 2),每个视频考虑50帧。然而,生成的MHI图像存在一些问题,如遮挡或噪声,特别是在户外有尺度变化的视频子集中获得的MHI图像,这对SPS提取产生了不利影响,导致分类准确率不高。
超级会员免费看
订阅专栏 解锁全文
7274

被折叠的 条评论
为什么被折叠?



