40、基于斜率模式谱与手部交互特征的人类活动识别研究

基于斜率模式谱与手部交互特征的人类活动识别研究

在计算机视觉和人工智能领域,人类活动识别(HAR)是一个具有挑战性且重要的研究方向,其在环境辅助生活(AAL)等领域有着广泛的应用前景。本文将介绍两种不同的人类活动识别方法,分别是基于斜率模式谱(SPS)的人类动作识别方法,以及利用深度卷积网络检测手部信息来识别日常生活活动(ADL)的方法。

基于斜率模式谱的人类动作识别
1. K近邻分类器

在人类动作识别方法中,分类是重要的一部分,它对HAR的性能起着关键作用。这里选择K近邻(KNN)分类器,因为与其他机器学习算法相比,它易于实现。而且,从SPS算法中提取的特征非常适合KNN分类器,无需进行降维技术来避免分类器受到维度灾难的影响。

2. 实验设置
  • 数据集 :使用KTH数据集进行方法性能评估,该数据集是HAR中常用的基准数据集之一。它包含25个受试者在四种不同条件下执行六种人类动作的2391个序列,动作包括拳击、挥手、拍手、慢跑、跑步和行走。序列在均匀背景下以25fps的帧率拍摄,经过下采样后空间分辨率为160×120像素,平均长度为4秒。
  • 特征提取 :对每个动作视频序列进行处理以生成运动历史图像(MHI)。MHI计算的参数对于捕捉相关运动信息至关重要,这里采用参数(τ, ϵ, δ) = (255, 40, 2),每个视频考虑50帧。然而,生成的MHI图像存在一些问题,如遮挡或噪声,特别是在户外有尺度变化的视频子集中获得的MHI图像,这对SPS提取产生了不利影响,导致分类准确率不高。
【EI复现】基于主从博弈的新型城镇配电系统产消者竞价策略【IEEE33节点】(Matlab代码实现)内容概要:本文介绍了基于主从博弈理论的新型城镇配电系统中产消者竞价策略的研究,结合IEEE33节点系统,利用Matlab进行仿真代码实现。该研究聚焦于电力市场环境下产消者(既生产又消费电能的主体)之间的博弈行为建模,通过构建主从博弈模型优化竞价策略,提升配电系统运行效率经济性。文中详细阐述了模型构建思路、优化算法设计及Matlab代码实现过程,旨在复现高水平期刊(EI收录)研究成果,适用于电力系统优化、能源互联网及需求响应等领域。; 适合人群:具备电力系统基础知识和一定Matlab编程能力的研究生、科研人员及从事能源系统优化工作的工程技术人员;尤其适合致力于电力市场博弈、分布式能源调度等方向的研究者。; 使用场景及目标:① 掌握主从博弈在电力系统产消者竞价中的建模方法;② 学习Matlab在电力系统优化仿真中的实际应用技巧;③ 复现EI级别论文成果,支撑学术研究或项目开发;④ 深入理解配电系统中分布式能源参市场交易的决策机制。; 阅读建议:建议读者结合IEEE33节点标准系统数据,逐步调试Matlab代码,理解博弈模型的变量设置、目标函数构建求解流程;同时可扩展研究不同市场机制或引入不确定性因素以增强模型实用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值