题目
有 N N N个商品,收益 P i P_i Pi,和过期时间 D i D_i Di,一旦超过了过期时间,商品就不能再卖,问最大收益。
分析(二叉堆)
可以按过期时间从小到大排序,扫描每个商品,建小根堆,存收益;如果过期时间超过堆的个数,那么直接插入堆,等于堆的个数,那么需要与堆顶比较出较大的为堆顶。时间复杂度 O ( n l o g n ) O(nlogn) O(nlogn)
代码
#include <cstdio>
#include <queue>
struct rec{int x,y;};
bool operator<(const rec &a,const rec &b){return a.y>b.y;};
std::priority_queue<int>q; std::priority_queue<rec>a; int n;
int in(){
int ans=0; char c=getchar();
while (c<48||c>57) c=getchar();
while (c>47&&c<58) ans=ans*10+c-48,c=getchar();
return ans;
}
int main(){
while (scanf("%d",&n)==1){
while (a.size()) a.pop(); int ans=0;
for (register int i=1;i<=n;i++) a.push((rec){in(),in()});//输入
for (register int i=1;i<=n;i++){
rec c=a.top(); a.pop();
if (c.y==q.size()&&c.x>-q.top()) q.pop(),q.push(-c.x);//等于堆的元素数且价值大于堆顶
else if (c.y>q.size()) q.push(-c.x);//直接插入堆顶
}
while (q.size()) ans-=q.top(),q.pop();
printf("%d\n",ans);
}
return 0;
}
分析(并查集)
用贪心的思想,按价值从大到小排序,实时维护该商品过期的前一个时间即可,时间复杂度
O
(
n
l
o
g
n
)
O(nlogn)
O(nlogn)(还比二叉堆慢)
代码
#include <cstdio>
#include <queue>
#include <cstring>
struct rec{int x,y;};
bool operator<(const rec &a,const rec &b){return a.x<b.x;};
std::priority_queue<rec>a; int n,f[10001];
int in(){
int ans=0; char c=getchar();
while (c<48||c>57) c=getchar();
while (c>47&&c<58) ans=ans*10+c-48,c=getchar();
return ans;
}
int getf(int u){return f[u]<0?u:f[u]=getf(f[u]);}
int main(){
while (scanf("%d",&n)==1){
int ans=0,poi; memset(f,-1,sizeof(f));
for (register int i=1;i<=n;i++) a.push((rec){in(),in()});
for (register int i=1;i<=n;i++)
{
rec c=a.top(); a.pop();
if ((poi=getf(c.y))>0) ans+=c.x,f[poi]=poi-1;//指向前一天
}
printf("%d\n",ans);
}
return 0;
}