#计数型dp#poj 1737 Connected Graph

PS:THANKS FOR GJR——ssl_xxy

题目

求N个节点的无向连通图(节点有标号)


分析

可以发现,直接求太难求,像上一题Gerald and Giant Chess一样,必须反向求答案,then
f [ i ] = 2 i ∗ ( i − 1 ) ÷ 2 − ∑ j = 1 i − 1 f [ j ] × C i − 1 j − 1 × 2 ( i − j ) ∗ ( i − j − 1 ) ÷ 2 f[i]=2^{i*(i-1)\div2}-\sum_{j=1}^{i-1}f[j]\times C_{i-1}^{j-1}\times2^{(i-j)*(i-j-1)\div2} f[i]=2i(i1)÷2j=1i1f[j]×Ci1j1×2(ij)(ij1)÷2
然后就是高精度了


代码

#include <cstdio>
#include <vector>
#define mod 10000
typedef unsigned long long ull;
std::vector<ull>tri[50]; std::vector<ull>c[50]; std::vector<ull>f[50];
void print(ull ans){if (ans>9) print(ans/10); putchar(ans%10+48);}
int min(int a,int b){return (a<b)?a:b;}
int main(){
	for (register int i=0;i<50;i++) c[i].push_back(1);
	for (register int i=0;i<50;i++)
		for (register int j=1;j<=i+1>>1;j++) //只存一半
		    c[i].push_back(c[i][j-1]*(i-j+2)/j);//组合公式
    tri[0].push_back(1);
	for (register int i=1;i<50;i++){
		tri[i]=tri[i-1]; ull g=0,s;
        for (register int j=0;j<tri[i].size();j++){//高精乘单精,tri是2^高斯等差数列公式次方
            s=tri[i][j]*(1ll<<i)+g;
            g=s/mod; tri[i][j]=s%mod;
            }
        while (g) tri[i].push_back(g%mod),g/=mod;
	}
	f[0].push_back(1);
	for (register int i=1;i<50;i++){
		f[i]=tri[i];
		for (register int j=0;j<i;j++){
			std::vector<ull>t,t1;  t=tri[i-j-1]; t1.clear(); ull g=0,s;
            for (register int p=0;p<t.size();p++){
                s=t[p]*c[i-1][min(j,i-j)]+g;
                g=s/mod; t[p]=s%mod;
            }
            while (g) t.push_back(g%mod),g/=mod;
            for (register int p1=0;p1<t.size();p1++)
            for (register int p2=0;p2<f[j].size();p2++){//高精乘高精
            	if (t1.size()==p1+p2) t1.push_back(t[p1]*f[j][p2]); else t1[p1+p2]+=t[p1]*f[j][p2];
            	if (t1.size()==p1+p2+1) t1.push_back(t1[p1+p2]/mod); else t1[p1+p2+1]+=t1[p1+p2]/mod;
            	t1[p1+p2]%=mod;
			}
			g=0;
			while (t1.size()<f[i].size()) t1.push_back(0);//一定要注意补0(vector)
			for (register int p=0;p<f[i].size();p++)//高精减高精
			if (f[i][p]>=t1[p]+g) f[i][p]-=t1[p]+g,g=0;
			    else f[i][p]+=mod-t1[p]-g,g=1;
		}
	}
	int n;
	while (scanf("%d",&n)==1&&n)
	{
		for (register int j=f[n-1].size()-1;j>=0;j--){
			ull k=mod/10; if (j<f[n-1].size()-1)
			while (k>f[n-1][j]&&k>1) putchar('0'),k/=10;
			print(f[n-1][j]);
		}
		putchar('\n');
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值