#计数型dp#poj 1037 A decorative fence

题目

有n根长短不一的木板,需要高低交错排列,求从小到大第m个排列


分析

首先这道题可以用预处理的方式,设 f [ i ] [ j ] [ 0 / 1 ] f[i][j][0/1] f[i][j][0/1]表示第 i i i位是低/高位最左边的是 j j j的最小排列
f [ i ] [ j ] [ 0 ] = f [ i − 1 ] [ p ] [ 1 ] ( j ≤ p ≤ i − 1 ) f[i][j][0]=f[i-1][p][1](j\leq p\leq i-1) f[i][j][0]=f[i1][p][1](jpi1)
f [ i ] [ j ] [ 1 ] = f [ i − 1 ] [ p ] [ 0 ] ( 1 ≤ p ≤ j − 1 ) f[i][j][1]=f[i-1][p][0](1\leq p\leq j-1) f[i][j][1]=f[i1][p][0](1pj1)
再用试填法求出答案


代码

#include <cstdio>
long long f[21][21][21];
long long in(){
	long long ans=0; char c=getchar();
	while (c<48||c>57) c=getchar();
	while (c>47&&c<58) ans=ans*10+c-48,c=getchar();
	return ans;
}
void print(int ans){
	if (ans>9) print(ans/10); putchar(ans%10+48);
}
int main(){
	int t=in(),n; long long m;
	f[1][1][0]=f[1][1][1]=1;
	for (int i=2;i<=20;i++)
	for (int j=1;j<=i;j++){//动态规划
		for (int p=j;p<i;p++) f[i][j][0]+=f[i-1][p][1];
		for (int p=1;p<j;p++) f[i][j][1]+=f[i-1][p][0];
	}
	while (t--){
		n=in(); m=in(); int q=0,last,k;
		for (int j=1;j<=n;j++){//第一个由于不知道高低排列所以要特殊处理
			if (f[n][j][1]>=m){//至少不在第m个排列之前
				last=j,k=1; break;
			}
			else m-=f[n][j][1];
			if (f[n][j][0]>=m){
				last=j,k=0; break;
			}
			else m-=f[n][j][0];
		}
		q|=1<<last; print(last);
		for (int i=2;i<=n;i++){
			k^=1; int j=0;
			for (int len=1;len<=n;len++)
			if (!(q&(1<<len))){//没有用过这块木板
				j++;
				if (!k&&len<last||k&&len>last)//符合答案
				if (f[n-i+1][j][k]>=m){//找到答案
					last=len; break;
				}
				else m-=f[n-i+1][j][k];//否则继续填
			}
			q|=1<<last; putchar(' ');//标记用过一块木板
			print(last);
		}
		putchar('\n');
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值