#整除分块#洛谷 2261 余数之和

题目

给定 n n n k k k,求 ( k m o d    1 ) + ( k m o d    2 ) + … + ( k m o d    n − 1 ) + ( k m o d    n ) (k\mod1)+(k\mod2)+…+(k\mod n-1)+(k\mod n) (kmod1)+(kmod2)++(kmodn1)+(kmodn)


分析

因为 ( k m o d    n ) = k − ⌊ k ÷ n ⌋ (k\mod n)=k-\lfloor k\div n\rfloor (kmodn)=kk÷n,所以最终答案= n × k − ∑ i = 1 n ⌊ k ÷ i ⌋ × i n\times k-\sum_{i=1}^n\lfloor k\div i\rfloor\times i n×ki=1nk÷i×i
因为还是会超时,所以要用一种分块的思想,
g ( x ) = ⌊ k ÷ ⌊ k ÷ x ⌋ ⌋ g(x)=\lfloor k\div\lfloor k\div x\rfloor\rfloor g(x)=k÷k÷x,那么 g ( x ) ≥ ⌊ k ÷ ( k ÷ x ) ⌋ = x g(x)\geq \lfloor k\div(k\div x)\rfloor=x g(x)k÷(k÷x)=x
⌊ k ÷ g ( x ) ⌋ ≥ ⌊ k ÷ ( k ÷ ⌊ k ÷ x ⌋ ) ⌋ = ⌊ k ÷ x ⌋ \lfloor k\div g(x)\rfloor\geq\lfloor k\div(k\div\lfloor k\div x\rfloor)\rfloor=\lfloor k\div x\rfloor k÷g(x)k÷(k÷k÷x)=k÷x,所以 ⌊ k ÷ g ( x ) ⌋ = ⌊ k ÷ x ⌋ \lfloor k\div g(x)\rfloor=\lfloor k\div x\rfloor k÷g(x)=k÷x
那么就可以用整除分块求解
然后用等差数列求答案即可


代码

#include <cstdio>
#include <algorithm>
long long n,k,ans;
int main(){
	scanf("%lld%lld",&n,&k); ans=n*k;
	for (register long long x=1,gx;x<=n;x=gx+1){
		gx=k/x?std::min(k/(k/x),n):n;//有约数为x
		ans-=(k/x)*(x+gx)*(gx-x+1)>>1;//等差数列
	}
	printf("%lld",ans);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值