题目
设 f ( x ) = ∑ i = 1 n x   m o d   i f(x)=\sum_{i=1}^n x \bmod i f(x)=∑i=1nxmodi
分析
那么
f
(
x
)
=
n
x
−
∑
i
=
1
n
⌊
x
i
⌋
i
f(x)=nx-\sum_{i=1}^n \lfloor\frac{x}{i}\rfloor i
f(x)=nx−i=1∑n⌊ix⌋i
考虑
⌊
x
i
⌋
\large\lfloor\frac{x}{i}\rfloor
⌊ix⌋与
⌊
x
+
1
i
⌋
\large\lfloor\frac{x+1}{i}\rfloor
⌊ix+1⌋的关系,发现只有
i
i
i是
x
+
1
x+1
x+1的约数时答案才会增加,
所以
f
(
x
)
=
f
(
x
−
1
)
+
n
x
−
∑
d
∣
x
d
f(x)=f(x-1)+nx-\sum_{d|x}d
f(x)=f(x−1)+nx−d∣x∑d