#约数#洛谷 3708 koishi的数学题

题目

f ( x ) = ∑ i = 1 n x   m o d   i f(x)=\sum_{i=1}^n x \bmod i f(x)=i=1nxmodi


分析

那么 f ( x ) = n x − ∑ i = 1 n ⌊ x i ⌋ i f(x)=nx-\sum_{i=1}^n \lfloor\frac{x}{i}\rfloor i f(x)=nxi=1nixi
考虑 ⌊ x i ⌋ \large\lfloor\frac{x}{i}\rfloor ix ⌊ x + 1 i ⌋ \large\lfloor\frac{x+1}{i}\rfloor ix+1的关系,发现只有 i i i x + 1 x+1 x+1的约数时答案才会增加,
所以 f ( x ) = f ( x − 1 ) + n x − ∑ d ∣ x d f(x)=f(x-1)+nx-\sum_{d|x}d f(x)=f(x1)+nxdxd


代码(就不贴了吧)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值