UVA - 11029 - Leading and Trailing (数学)

题目链接:https://cn.vjudge.net/problem/UVA-11029

题意:\small n^k的前三位数字和后三位数字中间用...连接。

思路:后 \small m 位直接快速幂取余\small 10^{m}就行了,主要是前三位,我们定义\small x = n^{k}两边同时取对数,\small log_{10}^{n^k}=log_{10}^{x},根据公式 ,可以得到\small x=10^{k*log_{10}^{n}},这个数很大,显然不能直接计算,我们定义 \small a 为 \small k*log_{10}^{n} 的小数部分,b为 \small k*log_{10}^{n} 的整数部分,则\small a = floor(k*log_{10}^{n}),b = k*log_{10}^{n}-a。所以\small x = 10^a*10^b,显然 \small x 的前几位数肯定是由 \small 10^b 决定的,这是一个介于\small 0\rightarrow 10之间的小数,所以,\small x 的前 \small m 位数就为\small 10^{m-1}*10^{b}

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int mod = 1000;
ll n, k;
ll qpow(ll a, ll b)
{
    a %= mod;
    ll ans = 1;
    while(b)
    {
        if(b & 1) ans = ans * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return ans;
}
int main()
{
    int T; scanf("%d",&T);
    while(T--)
    {
        scanf("%lld%lld",&n, &k);
        ll ed = qpow(n, k);
        double a = k * log10(n);
        double b = a - floor(a);
        ll be = pow(10, b) * 100;
        printf("%lld...%03lld\n",be, ed);
    }
}

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页