手撕/手写/自己实现 BN层/batch norm/BatchNormalization python torch pytorch

该文详细介绍了卷积神经网络中BN层的工作原理,包括在通道维度上计算均值和方差来实现批量归一化。文中提供了手动实现BN层的代码示例,并对比了PyTorch内置BN层的输出,验证了自定义实现的正确性。同时,讨论了训练时方差计算的两种不同方式,并展示了在训练和评估模式下BN层的运行情况。
摘要由CSDN通过智能技术生成

计算过程

在卷积神经网络中,BN 层输入的特征图维度是 (N,C,H,W), 输出的特征图维度也是 (N,C,H,W)
N 代表 batch size
C 代表 通道数
H 代表 特征图的高
W 代表 特征图的宽

我们需要在通道维度上做 batch normalization,
在一个 batch 中,
使用 所有特征图 相同位置上的 channel 的 所有元素,计算 均值和方差,
然后用计算出来的 均值和 方差,更新对应特征图上的 channel , 生成新的特征图

如下图所示:
对于4个橘色的特征图,计算所有元素的均值和方差,然后在用于更新4个特征图中的元素(原来元素减去均值,除以方差)
![[attachments/BN示意图.png]]

代码

def my_batch_norm_2d_detail(features, eps=1e-5):
    '''
        这个函数的写法是为了帮助理解 BatchNormalization 具体运算过程
        实际使用时这样写会比较慢
    '''
    
    n,c,h,w = features.shape
    features_copy = features.clone()
    running_var = torch.randn(c)
    running_mean = torch.randn(c)
    for ci in range(c):# 分别 处理每一个通道
        mean = 0 # 均值
        var = 0 # 方差
        
        _sum = 0 
        # 对一个 batch 中,特征图相同位置 channel 的每一个元素求和
        for ni in range(n):            
            for hi in range(h):
                for wi in range(w):
                    _sum += features[ni,ci, hi, wi]
        mean = _sum / (n * h * w) 
        running_mean[ci] = mean
        

        _sum = 0
        # 对一个 batch 中,特征图相同位置 channel 的每一个元素求平方和,用于计算方差 
        for ni in range(n):            
            for hi in range(h):
                for wi in range(w):
                    _sum += (features[ni,ci, hi, wi] - mean) ** 2
        var = _sum / (n * h * w )
        running_var[ci] = _sum / (n * h * w - 1)

        # 更新元素
        for ni in range(n):            
            for hi in range(h):
                for wi in range(w):
                    features_copy[ni,ci, hi, wi] = (features_copy[ni,ci, hi, wi] - mean) / torch.sqrt(var + eps) 
        
    return features_copy, running_mean, running_var

if __name__ == "__main__":


    torch.set_printoptions(precision=7)

    torch_bn = nn.BatchNorm2d(4)  # 设置 channel 数
    torch_bn.momentum = None
    features = torch.randn(4, 4, 2, 2) # (N,C,H,W)
        
    torch_bn_output = torch_bn(features)    
    my_bn_output, running_mean, running_var = my_batch_norm_2d_detail(features)        
            
    print(torch.allclose(torch_bn_output, my_bn_output))
    print(torch.allclose(torch_bn.running_mean, running_mean))
    print(torch.allclose(torch_bn.running_var, running_var))

注意事项

方差计算

需要注意的是,在训练的过程中,方差有两种不同的计算方式,

在训练时,用于更新特征图的是 有偏方差
而 running_var 的计算,使用的是 无偏方差
在这里插入图片描述

相关链接

官方人员手写BN

"""
Comparison of manual BatchNorm2d layer implementation in Python and
nn.BatchNorm2d

@author: ptrblck
"""

import torch
import torch.nn as nn


def compare_bn(bn1, bn2):
    err = False
    if not torch.allclose(bn1.running_mean, bn2.running_mean):
        print('Diff in running_mean: {} vs {}'.format(
            bn1.running_mean, bn2.running_mean))
        err = True

    if not torch.allclose(bn1.running_var, bn2.running_var):
        print('Diff in running_var: {} vs {}'.format(
            bn1.running_var, bn2.running_var))
        err = True

    if bn1.affine and bn2.affine:
        if not torch.allclose(bn1.weight, bn2.weight):
            print('Diff in weight: {} vs {}'.format(
                bn1.weight, bn2.weight))
            err = True

        if not torch.allclose(bn1.bias, bn2.bias):
            print('Diff in bias: {} vs {}'.format(
                bn1.bias, bn2.bias))
            err = True

    if not err:
        print('All parameters are equal!')


class MyBatchNorm2d(nn.BatchNorm2d):
    def __init__(self, num_features, eps=1e-5, momentum=0.1,
                 affine=True, track_running_stats=True):
        super(MyBatchNorm2d, self).__init__(
            num_features, eps, momentum, affine, track_running_stats)

    def forward(self, input):
        self._check_input_dim(input)

        exponential_average_factor = 0.0

        if self.training and self.track_running_stats:
            if self.num_batches_tracked is not None:
                self.num_batches_tracked += 1
                if self.momentum is None:  # use cumulative moving average
                    exponential_average_factor = 1.0 / float(self.num_batches_tracked)
                else:  # use exponential moving average
                    exponential_average_factor = self.momentum

        # calculate running estimates
        if self.training:
            mean = input.mean([0, 2, 3])
            # use biased var in train
            var = input.var([0, 2, 3], unbiased=False)
            n = input.numel() / input.size(1)
            with torch.no_grad():
                self.running_mean = exponential_average_factor * mean\
                    + (1 - exponential_average_factor) * self.running_mean
                # update running_var with unbiased var
                self.running_var = exponential_average_factor * var * n / (n - 1)\
                    + (1 - exponential_average_factor) * self.running_var
        else:
            mean = self.running_mean
            var = self.running_var

        input = (input - mean[None, :, None, None]) / (torch.sqrt(var[None, :, None, None] + self.eps))
        if self.affine:
            input = input * self.weight[None, :, None, None] + self.bias[None, :, None, None]

        return input


# Init BatchNorm layers
my_bn = MyBatchNorm2d(3, affine=True)
bn = nn.BatchNorm2d(3, affine=True)

compare_bn(my_bn, bn)  # weight and bias should be different
# Load weight and bias
my_bn.load_state_dict(bn.state_dict())
compare_bn(my_bn, bn)

# Run train
for _ in range(10):
    scale = torch.randint(1, 10, (1,)).float()
    bias = torch.randint(-10, 10, (1,)).float()
    x = torch.randn(10, 3, 100, 100) * scale + bias
    out1 = my_bn(x)
    out2 = bn(x)
    compare_bn(my_bn, bn)

    torch.allclose(out1, out2)
    print('Max diff: ', (out1 - out2).abs().max())

# Run eval
my_bn.eval()
bn.eval()
for _ in range(10):
    scale = torch.randint(1, 10, (1,)).float()
    bias = torch.randint(-10, 10, (1,)).float()
    x = torch.randn(10, 3, 100, 100) * scale + bias
    out1 = my_bn(x)
    out2 = bn(x)
    compare_bn(my_bn, bn)

    torch.allclose(out1, out2)
    print('Max diff: ', (out1 - out2).abs().max())
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值