- 博客(45)
- 收藏
- 关注
原创 服务器ssh安装
sudo apt install openssh-server 安装ssh。sudo systemctl enable ssh 开机自启动ssh。sudo systemctl status ssh 查看ssh的状态。sudo systemctl start ssh 启动ssh服务。sudo ss -tunlp 查看端口号。ssh 用户名@服务器IP地址 -p 端口号。
2025-04-14 15:17:32
220
原创 Tensorrt的安装、转化、以及推理
1)下载地址:一般下载GA版本到本地,EA为试用版,下载TAR包,这种安装最简单。二、onnx转tensorrt的engine操作。3)验证安装是否成功。根据12345678安装;
2025-03-26 20:52:10
475
原创 深度学习评价指标
Recall:TP/(TP+FN) 所有真实目标中,模型预测正确的目标比例 查全率,虽然全部中,但是太多了。Precision:TP/(TP+FP) 模型预测的所有目标中,预测正确的比例 查准率,预测就准,但是会漏。对于每一个预测得到的框,看它的三个指标,分别是与哪个预测框的相交,分数是多少,相交IOU是多少。FP(False Postive):IoU <=0.5的检测框数量。FN(False Negative):没有检测到的GT的数量。P-R曲线: Precision-Recall曲线。
2024-03-07 09:40:32
449
原创 LangChain基础知识入门
Indexes组件的目的是让LangChain具备处理文档处理的能力,包括:文档加载、检索等。如果你想把第一个模型输出的结果,直接作为第二个模型的输入,还可以使用LangeChain的SimpleSequentialChain,用于链接两条链。2)Chat Models(聊天模型):基于LLMs,不同的是它接收聊天信息作为输入,返回的也是聊天信息。3)Embeddings Models(嵌入模型):文本嵌入模型接收文本作为输入,返回的是浮点数列表。Indexes:索引,用来结构化文档,以便和模型交互。
2024-03-06 20:36:07
249
原创 提示工程(Prompt Engineering)
提示工程也被称为上下文学习,是指通过精心设计的提示技术来引导LLM行为,则无需更改模型权重。其目标是使模型输出与给定任务的人类意图一致。原则:以清晰、具体的方式表达需求。用清晰详尽的语言表达Prompt。技巧:要写分隔符、结构化输出、参考示例、让模型充当角色。2.让模型充足思考:就是指定步骤。1.给模型清晰指令:描述要清晰。1、什么是提示工程?
2024-02-22 21:58:42
230
原创 Pytorch使用
一个Python 深度学习框架,它将数据封装成张量(Tensor)来进行处理。PyTorch中的张量就是元素为同一种数据类型的多维矩阵。在PyTorch中,张量以"类" 的形式封装起来,对张量的一些运算、处理的方法被封装在类中。Pytorch的安装:pip install torch==2.0.1 -ihttps://pypi.tuna.tsinghua.edu.cn/simple。9、案例-线性回归案例。
2024-02-07 16:56:02
868
1
原创 ChatGPT原理
1、模型越大、参数越多,并不是效果越好。因为过拟合,出现模型能力不一致问题。只能说刚开始好,后面就不一定了。2、ChatGPT为了解决模型的不一致问题,使用了人类反馈来指导学习过程,对其进行了进一步训练,用到的技术是强化学习(Reinforcement Learning,RL)3、强化学习是机器学习的一种方法,用于描述和解决智能体(Agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。4、强化学习是 状态--动作--奖励 的无限循环。
2024-02-03 19:42:24
807
原创 深度学习基础
6、batchsize越大,训练效果越好,但并不是越快。主要是受制于cpu的屋脊效应,io吞吐过大会卡住,反而慢。输入部分、输出部分、编码器部分、解码器部分、解码器输入部分(输出部分再输入)2、二分类使用sigmoid激活函数。3、多分类使用softmax激活函数。4、多分类任务的损失函数是交叉熵损失。1、在隐藏层选择ReLu激活函数。
2024-01-27 19:18:08
118
原创 VScode与PCL联合编程
默认安装路径:cmake -DCMAKE_INSTALL_PREFIX=/usr/local ..如果安装过ros,需要指定安装到其他地方,再使用时,也就要修改路径。
2023-08-05 09:39:32
1225
原创 【无标题】
ROS1.0常用指令rostopic名称示例解释listrostopic list列出所有的topic名称inforostopic info <topic_name>查看指定的topic的信息,包括类型、发布者和订阅者echorostopic echo <topic_name>实时显示指定topic的数据内容pubrostopic pub <topic_name> <message_type> <
2023-07-26 18:35:38
79
1
原创 yolov5s剪枝操作
2、稀疏化训练的值根据tensorboard的结果而定;3、剪枝如果报错,减少剪枝比例;1、权重路径根据实际情况修改;剪枝(yolov5s.ymal中要改种类)
2023-07-17 23:13:44
260
1
原创 L1 L2正则化
更小权重矩阵的神经网络导致更简单的模型。所以在损失函数后面添加一个数,让损失函数变小。损失函数太大了,让损失函数的值变小一点点。
2023-07-16 23:49:43
108
1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人