文章目录
TOPSIS法(Technique for Order Preference by Similarity to Ideal Solution)可翻译为逼近理想解排序法,国内常简称为优劣解距离法。
TOPSIS 法是一种常用的综合评价方法,其能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。
回顾:层次分析法的一些局限性
1. 评价的决策层不能太多,太多的话n会很大,判断矩阵和 一致矩阵差异可能会很大。
我们上面提到过的RI指标也只到了15:
| n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| R | 0 | 0 | 0.52 | 0.89 | 1.12 | 1.26 | 1.36 | 1.41 | 1.46 | 1.49 | 1.52 | 1.54 | 1.56 | 1.58 | 1.59 |
2. 如果决策层中指标的数据是已知的,那么我们如何利用这些数据来使得评价的更加准确呢?
该方法仍具有较强的主观性,判断/比较矩阵的构造在一定程度上是凭感觉决定的,一致性检验只是检验 感觉 有没有自相矛盾得太离谱。
如果题目中有已经提供了的数据,那就暗示我们不要用层次分析法了,我们可以通过分析这些数据内在的特征来进行建模。这就是TOPSIS方法应用于评价类问题与层次分析法不同之处。
一、模型介绍
1.1 引例:
坤坤宿舍共有四名同学,他们第一学期的高数成绩如下表所示:
| 姓名 | 成绩 |
| 坤坤 | 89 |
| 菜菜 | 60 |
| 小徐 | 74 |
| 鸡哥 | 99 |
请为这四名同学进行评估,该评分能合理的描述其高数水平的高低。
一个简单的想法:
| 姓名 | 成绩 | 等级level | 排名 | 评分 |
| 坤坤 | 89 | 2 | 3 | 3/10=0.3 |
| 菜菜 | 60 | 4 | 1 | 1/10=0.1 |
| 小徐 | 74 | 3 | 2 | 2/10=0.2 |
| 鸡哥 | 99 | 1 | 4 | 4/10=0.4 |
可见,鸡哥成绩最高,最后评估得分0.4也是最高的。
但该方法存在一些问题:哪怕菜菜只得了0分,他的评价分数也是0.1,只与鸡哥差0.3分。
一个较好的方法:
我们构造评分公式:
其中,最高成绩max:99,最低成绩min:60。
则有:
| 姓名 | 成绩 | 归一化前的评分 | 归一化后的评分 |
| 坤坤 | 89 | (89-60)/(99-60) = 0.74 | 0.74/2.1 = 0.35 |
| 菜菜 | 60 | (60-60)/(99-60) = 0 | 0 |
| 小徐 | 74 | (74-60)/(99-60) = 0.36 | 0.36/2.1 = 0.17 |
| 鸡哥 | 99 | (99-60)/(99-60) = 1 | 1/2.1 = 0.48 |
这样的话,菜菜考得再低,鸡哥考得再高,评分还是不变的。
其实,按卷子满分是max:100,最低min:0。
| 姓名 | 成绩 | 归一化前的评分 | 归一化后的评分 |
| 坤坤 | 89 | 0.89 | 0.28 |
| 菜菜 | 60 | 0.60 | 0.19 |
| 小徐 | 74 | 0.74 | 0.23 |
| 鸡哥 | 99 | 0.99 | 0.30 |
这样显然更合理一些,菜菜最后的评分也不是0分了。
但是,我们依然选择max:99,最低成绩min:60,而不是max:100,最低min:0。原因如下:
- 比较的对象一般要远大于两个,例如比较一个班级的成绩。
- 比较的指标也往往不只是一个方面的,例如成绩、工时数、课外竞赛得分等。
- 菜菜的成绩是0,但也许他的其它项就把评分弥补回来了。
- 有很多指标不存在理论上的最大值和最小值,例如衡量经济增长水平的指标:GDP增速。
评分的公式:

最低0.47元/天 解锁文章
1156





