【数学模型】TOPSIS

文章目录

回顾:层次分析法的一些局限性  

一、模型介绍

1.1 引例:

一个简单的想法:

一个较好的方法:

1.2 增加指标:

统一指标类型 

标准化处理

计算得分

二、TOPSIS的介绍

第一步:将原始矩阵正向化

第二步:正向化矩阵标准化

第三步:计算得分并归一化

三、拓展:添加权重

 *熵权法对TOPSIS模型的修正

度量信息量的大小

信息熵的定义 

熵权法的计算步骤

熵权法背后的原理

四、代码实现

*熵权法加权


TOPSIS法(Technique for Order Preference by Similarity to Ideal Solution)可翻译为逼近理想解排序法,国内常简称为优劣解距离法。

TOPSIS 法是一种常用的综合评价方法,其能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距

回顾:层次分析法的一些局限性  

1. 评价的决策层不能太多,太多的话n会很大,判断矩阵和 一致矩阵差异可能会很大。

我们上面提到过的RI指标也只到了15:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59

2. 如果决策层中指标的数据是已知的,那么我们如何利用这些数据来使得评价的更加准确呢? 

该方法仍具有较强的主观性,判断/比较矩阵的构造在一定程度上是凭感觉决定的,一致性检验只是检验 感觉 有没有自相矛盾得太离谱。 


如果题目中有已经提供了的数据,那就暗示我们不要用层次分析法了,我们可以通过分析这些数据内在的特征来进行建模。这就是TOPSIS方法应用于评价类问题与层次分析法不同之处。


一、模型介绍

1.1 引例:

坤坤宿舍共有四名同学,他们第一学期的高数成绩如下表所示:

姓名 成绩
坤坤 89
菜菜 60
小徐 74
鸡哥 99

请为这四名同学进行评估,该评分能合理的描述其高数水平的高低。

一个简单的想法:

姓名 成绩 等级level 排名 评分
坤坤 89 2 3 3/10=0.3
菜菜 60 4 1 1/10=0.1
小徐 74 3 2 2/10=0.2
鸡哥 99 1 4 4/10=0.4

可见,鸡哥成绩最高,最后评估得分0.4也是最高的。

但该方法存在一些问题:哪怕菜菜只得了0分,他的评价分数也是0.1,只与鸡哥差0.3分。

一个较好的方法:

我们构造评分公式:

\frac{x-min}{max-min}

其中,最高成绩max:99,最低成绩min:60。

则有:

姓名 成绩 归一化前的评分 归一化后的评分
坤坤 89 (89-60)/(99-60) = 0.74 0.74/2.1 = 0.35
菜菜 60 (60-60)/(99-60) = 0 0
小徐 74 (74-60)/(99-60) = 0.36 0.36/2.1 = 0.17
鸡哥 99 (99-60)/(99-60) = 1 1/2.1 = 0.48

这样的话,菜菜考得再低,鸡哥考得再高,评分还是不变的。

其实,按卷子满分是max:100,最低min:0。

姓名 成绩 归一化前的评分 归一化后的评分
坤坤 89 0.89 0.28
菜菜 60 0.60 0.19
小徐 74 0.74 0.23
鸡哥 99 0.99 0.30

这样显然更合理一些,菜菜最后的评分也不是0分了。

但是我们依然选择max:99,最低成绩min:60,而不是max:100,最低min:0。原因如下:

  • 比较的对象一般要大于两个,例如比较一个班级的成绩。
  • 比较的指标也往往不只是一个方面的,例如成绩、工时数、课外竞赛得分等。
    • 菜菜的成绩是0,但也许他的其它项就把评分弥补回来了。
  • 有很多指标不存在理论上的最大值和最小值,例如衡量经济增长水平的指标:GDP增速。

评分的公式:

\frac{x-min}{max-min}

评论 20
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老师我作业忘带了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值