视频监控边缘分析盒 Python

视频监控边缘分析盒通过计算机视觉深度学习+边缘计算视频监控分析技术,视频监控边缘分析盒共同构成了基于边缘计算分析的视频图像识别技术。视频监控边缘分析盒通过对现场多路监控视频图像进行预处理,提高视频分析的速度。视频监控边缘分析盒可以应用于加油站智能视频分析、明厨亮灶视频监控智能分析、工地监控分析、城管视频监控分析、工厂视频监控智能分析、煤矿监控视频分析等场景。

Python是一门跨平台、脚本以及开发应用的编程语言。跨平台:跨平台概念是软件开发中一个重要的概念,即不依赖于操作系统,也不依赖硬件环境。一个操作系统(如Windows)下开发的应用,放到另一个操作系统(如Linux)下依然可以运行。开发应用:Python较为简单,无法支撑起太复杂的结构,只能用来实现简单功能。由于Python 较为简单,一般无法进行复杂的后端搭建,所以该语言通常用来进行一些简单的文本处理、数据处理等操作。爬虫:网络爬虫(又称为网页蜘蛛,网络机器人,在FOAF(Friend-of-a-Friend)社区中间,更经常性的被称为网页追逐者),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。另外一些不常使用的名字还有蚂蚁、自动索引、模拟程序或者蠕虫。

随着社会的发展和科技的进步,智慧城市“雪亮工程”建设已经遍布城市乡村的大街小巷,将传统监控摄像头具备Ai智能边缘计算识别分析能力更加重要。视频监控边缘分析盒对市场上比如海康大华宇视天地伟业等头部监控厂家,基本上都可以接入视频流进行智能识别分析。其他厂家监控只要满足200万像素及RTSP取流即可。

class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
        else:
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid

视频监控边缘分析盒可以识别检测到未戴安全帽、安全带穿戴识别、反光衣识别、工作服检测、睡岗离岗识别、吸烟检测、玩手机识别等安全隐患及违规行为,实现工厂以及工地智能监控。除此之外,视频监控边缘分析盒还可以实现厨师服厨师帽识别、口罩识别、猫狗老鼠识别以及智慧城管所需要的占道经营、违规摆摊、乱拉横幅、乱倒垃圾、车辆违停、车型识别、出店摆摊等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值