ubantu+kaldi安装填坑记录

目的:为了学习kaldi,安装kaldi运行的必要环境,下面先把我踩过的主要坑列举出来,然后在按照我的安装顺序写采坑记录

电脑环境:win10系统,显卡GT730M

1)坑1 :试图在虚拟机内安装kaldi

因为win10系统内有很多软件,资料,所以我就想着把win10保留下来,如果想在保留win10的基础上实现linux环境,有两种方法,一种是采用虚拟机,一种是采用双系统,为了方便,我就采用了虚拟机,但有个致命问题是,虚拟机内部的显卡是虚拟的,在cuda安装是会错

参考:https://blog.csdn.net/nothinglefttosay/article/details/45095125

           https://blog.csdn.net/zhuoyuezai/article/details/78751056

2)坑2:安装kaldi之前没有安装cuda等环境

kaldi安装之前除了要安装kaldi的必要安装包外,还有安装cuda和cudnn

3)坑3:安装的kaldi不是最新下载的

由于github的下载速度很慢,我就找了一个网盘内的资源,结果造成安装成功却运行错误,缺少部分文件

所以kaldi的安装还是要下载最新的kaldi,但github的下载可以提速。

git提速:https://www.jianshu.com/p/02841aec86f6

1.虚拟机内安装ubantu和安装kaldi(不可行的)

1)虚拟机安装

参考: https://blog.csdn.net/zhang_ling_yun/article/details/77918374

视频教学:https://ke.qq.com/webcourse/index.html#course_id=177867&term_id=100209216&taid=1003377374967499&vid=n1400hb1orj

2)ubantu下载

在官网进行下载 https://www.ubuntu.com/download

3)安装ubantu

下载后的.iso文件进行安装,安装时需要分配磁盘空间,内存,处理器核心数量等。

磁盘空间大小根据你的硬盘空间确定,内存数量一般推荐为计算机总内存的1/4,处理器核心数量就和电脑本身一致就行。

网络适配器选择桥接模式。

4)VMware Tools 安装

VMware Tools的安装是为了和windows实现文件的共享(kaldi文件的git下载速度很慢,有了文件共享就不用每次都下载(这是当时的想法,但每次安装都需要用最新的kaldi))

界面安装方法:https://blog.csdn.net/zxf1242652895/article/details/78203473

但在VMwareTools…tar.gz文件提取时会出现错误Extraction not performed You don't have the right permissions to extract archives in,改为命令方式安装没问题。

命令方式安装: https://blog.csdn.net/zz962/article/details/7706755

                          https://blog.csdn.net/iot_ai/article/details/61194517

5)kaldi安装

本想使用git命令下载了,但网速太慢,改为从windows(旧版的kaldi)内把文件拷贝到linux内。

拷贝命令:cp  share_file   target_file

首先将文件拷贝到共享文件夹内,在使用linux 命令将共享文件夹内部的文件复制到linux内(重点),如果直接在共享文件夹内直接编译安装会出现错误。

安装方式参考了https://blog.csdn.net/amds123/article/details/70313780

但在make时出现了错误,改为sudo make

安装失败

在安装kaldi之前需要先安装cuda和显卡驱动

在虚拟机内的显卡和主机的显卡是不一致的,也就是说虚拟机内部的显卡是虚拟出来的,当你安装虚拟机驱动后会出现错误。解决办法就是安装双系统,而不是虚拟机(搞了一天的教训,泪)

2.安装双系统win+linux(ubuntu)和安装kaldi(可行)

1)双系统的安装

安装参考: https://blog.csdn.net/s717597589/article/details/79117112/

               https://blog.csdn.net/davidhuang2017/article/details/70258173

               https://blog.csdn.net/yishengrusi/article/details/53976226

错误:使用easybcd 设置索引后,进入不了linux系统,错误为

错误原因:原因是找不到linux的索引,我有两块磁盘,win在第0块磁盘,ubuntu在第1块磁盘,第一块的磁盘索引导到第0块时出现错误,最后将ubuntu的索引文件/boot放到了第0块磁盘内部。

2)cuda和cudnn的安装

参考:https://blog.csdn.net/u010837794/article/details/63251725

        :https://blog.csdn.net/dihuanlai9093/article/details/79253963/

3)kaldi 安装

参考:https://blog.csdn.net/amds123/article/details/70313780

### 回答1: Ubantu是一个开源的操作系统,而CUDA是一种用于并行计算的平台。它允许程序员使用NVIDIA的GPU进行高性能计算。Annaconda是一个Python的发行版本,它集成了许多常用的科学计算库,并提供了一个便于管理和使用这些库的环境。PyCharm是一个强大的Python集成开发环境,提供了丰富的开发工具和功能,可以帮助程序员编写、调试和管理Python代码。 在使用这些工具的过程中,可以按照以下步骤操作: 1. 首先,安装Ubantu操作系统。可以从Ubantu官方网站下载最新版本的Ubantu安装程序,按照提示进行安装。 2. 安装CUDA平台。可以从NVIDIA官方网站下载对应版本的CUDA,然后按照说明进行安装和配置。 3. 安装Annaconda。可以从Annaconda官方网站下载最新版本的Annaconda安装程序,然后按照提示进行安装。 4. 配置Annaconda环境。安装完成后,可以通过命令行或图形界面工具设置Anaconda的环境变量和路径。 5. 安装PyCharm。可以从PyCharm官方网站下载最新版本的PyCharm安装程序,然后按照提示进行安装。 6. 配置PyCharm环境。安装完成后,可以打开PyCharm并设置Anaconda环境作为项目的解释器,以便使用Anaconda提供的科学计算库。 通过以上步骤,我们可以在Ubantu操作系统上搭建起CUDA、Annaconda和PyCharm的开发环境,可以方便地进行CUDA并行计算以及使用Annaconda提供的科学计算库进行开发。同时,PyCharm作为一个强大的开发工具,可以帮助我们更高效地编写、调试和管理Python代码。综上所述,使用Ubantu、CUDA、Annaconda和PyCharm可以构建一个强大的科学计算和开发环境。 ### 回答2: Ubantu是一个操作系统,是Linux的一个发行版。它是基于Debian的GNU/Linux操作系统,具有开源的特点,并且免费使用。Ubantu的优点是安全性高,更新频繁,社区支持活跃,拥有丰富的软件库。 CUDA是一种由NVIDIA提供的并行计算平台和API模型。它可以帮助程序员利用NVIDIA的GPU进行高性能计算和科学计算。CUDA可以加速各种应用程序,特别是需要大规模并行计算的任务。 Annaconda是一种用于Python和R编程的包管理器,同时也是一个可视化的集成开发环境(IDE)。它提供了一个方便的方式来管理Python和R的包和依赖,同时也提供了许多强大的工具和库,使得开发人员可以更轻松地进行数据科学和机器学习的开发工作。 PyCharm是一种由JetBrains开发的Python集成开发环境(IDE)。它提供了许多强大的功能,如代码自动补全、调试器、版本控制等,使得开发人员可以更高效地开发Python应用程序。PyCharm还具有良好的插件生态系统,可以进一步扩展其功能。 综上所述,使用Ubantu作为操作系统,配合CUDA进行高性能计算,同时使用Annaconda和PyCharm进行Python开发工作,可以提供快速、安全、高效的开发环境,特别适用于数据科学和机器学习的工作。 ### 回答3: "Ubuntu"、"CUDA"、"Anaconda"和"PyCharm"都是与计算机编程和数据科学相关的软件工具。 Ubuntu是一种流行的开源操作系统,它是基于Linux的,可以用于桌面、服务器和移动设备。Ubuntu提供了丰富的软件库和强大的终端命令行工具,使用户能够轻松地安装和管理软件。对于编程和数据科学家来说,Ubuntu是一个理想的操作系统选择,因为它支持广泛的编程语言和开发框架。 CUDA是一种由NVIDIA开发的并行计算平台和应用程序接口,它支持使用GPU(图形处理器)进行高性能计算。CUDA可以用于加速各种计算任务,包括机器学习、深度学习和科学计算。它提供了一套简单的编程接口,使开发者能够方便地使用GPU进行并行计算。 Anaconda是一个用于Python和R编程语言的开源发行版本,在数据科学领域具有广泛的应用。Anaconda提供了一个管理和部署数据科学环境的平台,包括各种流行的Python库和工具,如NumPy、Pandas和Scikit-learn。它还包含了一个强大的包管理器,允许用户轻松地安装、更新和管理各种软件包。 PyCharm是一种由JetBrains开发的集成开发环境(IDE),专为Python开发而设计。它提供了一套完整的开发工具,包括代码编辑器、调试器、版本控制集成和自动化测试等功能。PyCharm具有强大的代码补全和错误检查功能,可以帮助开发者提高编码效率和质量。 综上所述,Ubuntu、CUDA、Anaconda和PyCharm都是常用于计算机编程和数据科学的重要工具。它们提供了强大的功能和便利的开发环境,让编程和数据科学工作变得更加高效和方便。无论是初学者还是专业人士,都可以通过使用这些工具来提升编程和数据分析的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值