A - Two Rival Students
You are the gym teacher in the school.
There are n students in the row. And there are two rivalling students among them. The first one is in position a, the second in position b. Positions are numbered from 1 to n from left to right.
Since they are rivals, you want to maximize the distance between them. If students are in positions p and s respectively, then distance between them is |p−s|.
You can do the following operation at most x times: choose two adjacent (neighbouring) students and swap them.
Calculate the maximum distance between two rivalling students after at most x swaps.
Input
The first line contains one integer t (1≤t≤100) — the number of test cases.
The only line of each test case contains four integers n, x, a and b (2≤n≤100, 0≤x≤100, 1≤a,b≤n, a≠b) — the number of students in the row, the number of swaps which you can do, and positions of first and second rivaling students respectively.
Output
For each test case print one integer — the maximum distance between two rivaling students which you can obtain.
Example
Input
3
5 1 3 2
100 33 100 1
6 0 2 3
Output
2
99
1
Note
In the first test case you can swap students in positions 3 and 4. And then the distance between the rivals is equal to |4−2|=2.
In the second test case you don’t have to swap students.
In the third test case you can’t swap students
题目大意:给一个n,从1-n个人,然后有两个人a,b为竞争对手,可以这n个人可以每次相邻两个人交换一次,可以交换x次,问他们两个竞争对手交换若干次后最远距离为多少。(在第i,j个位置距离就为|i-j|)
解题思路:如果他们两个距离加上可以交换的次数之后距离没有超过n-1的话,那么他们两个最远距离一定时交换x次的距离,因为每交换一次距离都加1,但是如果他们两个距离加上交换次数大于n的话,那么最远的距离就是从1-n的距离,就是n-1。
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
int t,n,x,a,b,MAX,MIN;
cin>>t;
while(t--)
{
cin>>n>>x>>a>>b;
if(abs(a-