海量数据处理之Bloom Filter详解

一、什么是Bloom Filter

BloomFilter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。BloomFilter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(falsepositive)。因此,BloomFilter不适合那些零错误的应用场合。而在能容忍低错误率的应用场合下,BloomFilter通过极少的错误换取了存储空间的极大节省。

1.1、集合表示和元素查询

下面我们具体来看BloomFilter是如何用位数组表示集合的。初始状态时,BloomFilter是一个包含m位的位数组,每一位都置为0。.


为了表达S={x1,x2,…,xn}这样一个n个元素的集合,BloomFilter使用k个相互独立的哈希函数(HashFunction),它们分别将集合中的每个元素映射到{1,…,m}的范围中。对任意一个元素x,第i个哈希函数映射的位置hi(x)就会被置为11≤i≤k)。注意,如果一个位置多次被置为1,那么只有第一次会起作用,后面几次将没有任何效果。在下图中,k=3,且有两个哈希函数选中同一个位置(从左边数第五位,即第二个“1“处)。

 

在判断y是否属于这个集合时,我们对y应用k次哈希函数,如果所有hi(y)的位置都是11≤i≤k),那么我们就认为y是集合中的元素,否则就认为y不是集合中的元素。下图中y1就不是集合中的元素(因为y1有一处指向了“0”位)。y2或者属于这个集合,或者刚好是一个falsepositive


1.2、错误率估计
前面我们已经提到了,Bloom Filter在判断一个元素是否属于它表示的集合时会有一定的错误率(false positive rate),下面我们就来估计错误率的大小。在估计之前为了简化模型,我们假设kn<m且各个哈希函数是完全随机的。当集合S={x1,x2,…,xn}的所有元素都被k个哈希函数映射到m位的位数组中时,这个位数组中某一位还是0的概率是:

其中1/m表示任意一个哈希函数选中这一位的概率(前提是哈希函数是完全随机的),(1-1/m)表示哈希一次没有选中这一位的概率。要把S完全映射到位数组中,需要做kn次哈希。某一位是0意味着kn次哈希都没有选中它,因此这个概率就是(1-1/m)的kn次方。令p= e-kn/m是为了简化运算,这里用到了计算e时常用的近似:

ρ为位数组中0的比例,则ρ的数学期望E(ρ)= p’。在ρ已知的情况下,要求的错误率(falsepositive rate):


(1-ρ)为位数组中1的比例,(1-ρ)k就表示k次哈希都刚好选中1的区域,即falsepositive rate。上式中第二步近似在前面已经提到了,现在来看第一步近似。p’只是ρ的数学期望,在实际中ρ的值有可能偏离它的数学期望值。M.Mitzenmacher已经证明[2] ,位数组中0的比例非常集中地分布在它的数学期望值的附近。因此,第一步的近似得以成立。分别将pp’代入上式中,得:


相比p’f’,使用pf通常在分析中更为方便。

1.3、最优的哈希函数个数
既然Bloom Filter要靠多个哈希函数将集合映射到位数组中,那么应该选择几个哈希函数才能使元素查询时的错误率降到最低呢?这里有两个互斥的理由:如果哈希函数的个数多,那么在对一个不属于集合的元素进行查询时得到0的概率就大;但另一方面,如果哈希函数的个数少,那么位数组中的0就多。为了得到最优的哈希函数个数,我们需要根据上一小节中的错误率公式进行计算。
先用pf进行计算。注意到f = exp(k ln(1 − e−kn/m)),我们令g = k ln(1 − e−kn/m),只要让g取到最小,f自然也取到最小。由于p = e-kn/m,我们可以将g写成

根据对称性法则可以很容易看出当p= 1/2,也就是k= ln2· (m/n)时,g取得最小值。在这种情况下,最小错误率f等于(1/2)k≈ (0.6185)m/n。另外,注意到p是位数组中某一位仍是0的概率,所以p= 1/2对应着位数组中01各一半。换句话说,要想保持错误率低,最好让位数组有一半还空着。

需要强调的一点是,p= 1/2时错误率最小这个结果并不依赖于近似值pf。同样对于f’= exp(k ln(1 (1 1/m)kn))g’ = k ln(1 (1 1/m)kn)p’ = (1 1/m)kn,我们可以将g’写成


同样根据对称性法则可以得到当p’= 1/2时,g’取得最小值。

1.4、位数组的大小

    下面我们来看看,在不超过一定错误率的情况下,Bloom Filter至少需要多少位才能表示全集中任意n个元素的集合。假设全集中共有u个元素,允许的最大错误率为є,下面我们来求位数组的位数m

假设X为全集中任取n个元素的集合,F(X)是表示X的位数组。那么对于集合X中任意一个元素x,在s= F(X)中查询x都能得到肯定的结果,即s能够接受x。显然,由于BloomFilter引入了错误,s能够接受的不仅仅是X中的元素,它还能够є (u - n)false positive。因此,对于一个确定的位数组来说,它能够接受总共n+ є (u - n)个元素。在n+ є (u - n)个元素中,s真正表示的只有其中n个,所以一个确定的位数组可以表示


个集合。m位的位数组共有2m个不同的组合,进而可以推出,m位的位数组可以表示   


个集合。全集中n个元素的集合总共有   


个,因此要让m位的位数组能够表示所有n个元素的集合,必须有   

即:


上式中的近似前提是nєu相比很小,这也是实际情况中常常发生的。根据上式,我们得出结论:

在错误率不大于є的情况下,m至少要等于nlog2(1/є)才能表示任意n个元素的集合。

 上一小节中我们曾算出当k= ln2· (m/n)时错误率f最小,这时f= (1/2)k= (1/2)mln2 / n。现在令f≤є,可以推出


这个结果比前面我们算得的下界nlog2(1/є)大了log2e≈ 1.44倍。这说明在哈希函数的个数取到最优时,要让错误率不超过єm至少需要取到最小值的1.44倍。

1.5、概括

    在计算机科学中,我们常常会碰到时间换空间或者空间换时间的情况,即为了达到某一个方面的最优而牺牲另一个方面。BloomFilter在时间空间这两个因素之外又引入了另一个因素:错误率。在使用BloomFilter判断一个元素是否属于某个集合时,会有一定的错误率。也就是说,有可能把不属于这个集合的元素误认为属于这个集合(FalsePositive),但不会把属于这个集合的元素误认为不属于这个集合(FalseNegative)。在增加了错误率这个因素之后,BloomFilter通过允许少量的错误来节省大量的存储空间。

自从BurtonBloom70年代提出BloomFilter之后,BloomFilter就被广泛用于拼写检查和数据库系统中。近一二十年,伴随着网络的普及和发展,BloomFilter在网络领域获得了新生,各种BloomFilter变种和新的应用不断出现。可以预见,随着网络应用的不断深入,新的变种和应用将会继续出现,BloomFilter必将获得更大的发展。

二、适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 

三、基本原理及要点   

对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。 

还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。hash函数个数k=(ln2)*(m/n)时错误率最小在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44(lg表示以2为底的对数) 

举个例子我们假设错误率为0.01,则此时m应大概是n13倍。这样k大概是8个。 

注意这里mn的单位不同,mbit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。 

 四、扩展

       Bloom filter将集合中的元素映射到位数组中,用kk为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filterCBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom FilterSBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。 

 

五、问题实例

给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢? 

根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。 




  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值