初识c++(stack,queue)

一、stack

1、基本接口

在这里插入图片描述

2、stcak模拟实现

从栈的接口中可以看出,栈实际是一种特殊的vector,因此使用vector完全可以模拟实现stack。

template<class T, class Con = deque<T>>
class stack
{
public:

    stack()
    {}

    void push(const T& x)
    {
        _c.push_back(x);
    }

    void pop()
    {
        _c.push_back();
    }

    T& top()
    {
        return  _c.back();

    }

    const T& top()const
    {
        return _c.back();

    }
    size_t size()const
    {
        return _c.size();
    }
    bool empty()const
    {
        return _c.empty();
    }
private:
    Con _c;
};

二、queue

1、queue的使用

在这里插入图片描述

2、queue的模拟实现

因为queue的接口中存在头删和尾插,因此使用vector来封装效率太低,故可以借助list来模拟实

现queue,具体如下:

template<class T, class Con = deque<T>>
class queue
{
public:

    queue()
    {}
    void push(const T& x)
    {
        _c.push_back(x);
    }
    void pop()
    {
        _c.pop_front;
    }
    T& back()
    {
        _c.back();
    }
    const T& back()const
    {
        _c.back();
    }
    T& front()
    {
        _c.front();
    }
    const T& front()const
    {
        _c.front();
    }
    size_t size() const
    {
        return _c.size();
    }
    bool empty() const
    {
        return _c.empty();
    }
private:
    Con _c;
};

三、priority_queue

  1. 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素

中最大的。

  1. 此上下文类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶

部的元素)。

  1. 优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue

提供一组特定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的

顶部。

  1. 底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过

随机访问迭代器访问,并支持以下操作:

​ empty():检测容器是否为空

​ size():返回容器中有效元素个数

​ front():返回容器中第一个元素的引用

​ push_back():在容器尾部插入元素

​ pop_back():删除容器尾部元素

  1. 标准容器类vector和deque满足这些需求。默认情况下,如果没有为特定的priority_queue

类实例化指定容器类,则使用vector。

  1. 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用

算法函数make_heap、push_heap和pop_heap来自动完成此操作。

1、priority_queue的使用

优先级队列默认使用vector作为其底层存储数据的容器,在vector上又使用了堆算法将vector中

元素构造成堆的结构,因此priority_queue就是堆,所有需要用到堆的位置,都可以考虑使用

priority_queue。注意:默认情况下priority_queue是大堆。

在这里插入图片描述

#include <vector>
#include <queue>
#include <functional> // greater算法的头文件
void TestPriorityQueue()
{
	// 默认情况下,创建的是大堆,其底层按照小于号比较
	vector<int> v{ 3,2,7,6,0,4,1,9,8,5 };
	priority_queue<int> q1;
	for (auto& e : v)
		q1.push(e);
	cout << q1.top() << endl;
	// 如果要创建小堆,将第三个模板参数换成greater比较方式
	priority_queue<int, vector<int>, greater<int>> q2(v.begin(), v.end());
	cout << q2.top() << endl;
}

如果在priority_queue中放自定义类型的数据,用户需要在自定义类型中提供> 或者< 的重载。

class Date
{
public:
	Date(int year = 1900, int month = 1, int day = 1)
		: _year(year)
		, _month(month)
		, _day(day)
	{}
	bool operator<(const Date& d)const
	{
		return (_year < d._year) ||
			(_year == d._year && _month < d._month) ||
			(_year == d._year && _month == d._month && _day < d._day);
	}
	bool operator>(const Date& d)const
	{
		return (_year > d._year) ||
			(_year == d._year && _month > d._month) ||
			(_year == d._year && _month == d._month && _day > d._day);
	}
	friend ostream& operator<<(ostream& _cout, const Date& d)
	{
		_cout << d._year << "-" << d._month << "-" << d._day;
		return _cout;
	}
private:
	int _year;
	int _month;
	int _day;
};
void TestPriorityQueue()
{
	// 大堆,需要用户在自定义类型中提供<的重载
	priority_queue<Date> q1;
	q1.push(Date(2018, 10, 29));
	q1.push(Date(2018, 10, 28));
	q1.push(Date(2018, 10, 30));
	cout << q1.top() << endl;
	// 如果要创建小堆,需要用户提供>的重载
	priority_queue<Date, vector<Date>, greater<Date>> q2;
	q2.push(Date(2018, 10, 29));
	q2.push(Date(2018, 10, 28));
	q2.push(Date(2018, 10, 30));
	cout << q2.top() << endl;
}

2、模拟实现

#pragma once

#include<vector>
#include<list>
#include<functional>
using namespace std;
template<class T>
class Less
{
public:
	bool operator()(const T& x, const T& y)
	{
		return x < y;
	}
};

template<class T>
class Greater
{
public:
	bool operator()(const T& x, const T& y)
	{
		return x > y;
	}
};

namespace pq
{
	// 默认是大堆
	template<class T, class Container = vector<T>, class Compare = Less<T>>
	class priority_queue
	{
	public:
		//void AdjustUp(int child)
		//{
		//	Compare com;
		//	int parent = (child - 1) / 2;
		//	while (child > 0)
		//	{
		//		//if (_con[parent] < _con[child])
		//		if (com(_con[parent], _con[child]))
		//		{
		//			swap(_con[child], _con[parent]);
		//			child = parent;
		//			parent = (child - 1) / 2;
		//		}
		//		else
		//		{
		//			break;
		//		}
		//	}
		//}

		void push(const T& x)
		{
			_con.push_back(x);
			make_heap(_con.begin(), _con.end(), std::less<T>());//直接用算法库中的函数
			//AdjustUp(_con.size() - 1);
		}
		
		//void AdjustDown(int parent)
		//{
		//	// 先假设左孩子小
		//	size_t child = parent * 2 + 1;

		//	Compare com;
		//	while (child < _con.size())  // child >= n说明孩子不存在,调整到叶子了
		//	{
		//		// 找出小的那个孩子
		//		//if (child + 1 < _con.size() && _con[child] < _con[child + 1])
		//		if (child + 1 < _con.size() && com(_con[child], _con[child + 1]))
		//		{
		//			++child;
		//		}

		//		//if (_con[parent] < _con[child])
		//		if (com(_con[parent], _con[child]))
		//		{
		//			swap(_con[child], _con[parent]);
		//			parent = child;
		//			child = parent * 2 + 1;
		//		}
		//		else
		//		{
		//			break;
		//		}
		//	}
		//}

		void pop()
		{
			swap(_con[0], _con[_con.size() - 1]);
			_con.pop_back();
			//AdjustDown(0);
			make_heap(_con.begin(), _con.end(), std::less<T>());//直接用算法库中的函数
		}

		const T& top()
		{
			return _con[0];
		}

		size_t size() const
		{
			return _con.size();
		}

		bool empty() const
		{
			return _con.empty();
		}

	private:
		Container _con;
	};
}

3、容器适配器

适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设

计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口。虽然stack和queue中

也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为容器适配器,这是因

为stack和队列只是对其他容器的接口进行了包装,STL中stack和queue默认使用deque,

四、deque

1、deque的原理介绍

deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端

进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与

list比较,空间利用率比较高。

在这里插入图片描述

deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个

动态的二维数组,其底层结构如下图所示:

在这里插入图片描述

双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问

的假象,落在了deque的迭代器身上,因此deque的迭代器设计就比较复杂,如下图所示:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在这里插入图片描述

2、deque的缺陷

与vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩

容时,也不需要搬移大量的元素,因此其效率是必vector高的。

与list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段。

但是,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其

是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实

际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看

到的一个应用就是,STL用其作为stack和queue的底层数据结构。

3、stack和list选择deque的原因

stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性

结构,都可以作为stack的底层容器,比如vector和list都可以;queue是先进先出的特殊线性数据

结构,只要具有push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如

list。但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:

  1. stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进

行操作。

  1. 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的

元素增长时,deque不仅效率高,而且内存使用率高。

的底层数据结构。**

3、stack和list选择deque的原因

stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性

结构,都可以作为stack的底层容器,比如vector和list都可以;queue是先进先出的特殊线性数据

结构,只要具有push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如

list。但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:

  1. stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进

行操作。

  1. 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的

元素增长时,deque不仅效率高,而且内存使用率高。

结合了deque的优点,而完美的避开了其缺陷。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

suiyi_freely

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值