LBP纹理特征

本文纯属转载,由于原文图片无法直接显示,故转载过来加上原文图片

原文链接


LBP方法(Local binary patterns)是一个计算机视觉中用于图像特征分类的一个方法。LBP方法在1994年首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 提出[43][44],用于纹理特征提取。后来LBP方法与HOG特征分类器联合使用,改善了一些数据集[45]上的检测效果。

对LBP特征向量进行提取的步骤如下:

首先将检测窗口划分为16×16的小区域(cell),对于每个cell中的一个像素,将其环形邻域内的8个点(也可以是环形邻域多个点,如图 3‑4. 应用LBP算法的三个邻域示例所示)进行顺时针或逆时针的比较,如果中心像素值比该邻点大,则将邻点赋值为1,否则赋值为0,这样每个点都会获得一个8位二进制数(通常转换为十进制数)。然后计算每个cell的直方图,即每个数字(假定是十进制数)出现的频率(也就是一个关于每一个像素点是否比邻域内点大的一个二进制序列进行统计),然后对该直方图进行归一化处理。最后将得到的每个cell的统计直方图进行连接,就得到了整幅图的LBP纹理特征,然后便可利用SVM或者其他机器学习算法进行分类了。



纹理分类是一个很老的topic,但是一些纹理分类的方法为以后的图片分类奠定了基础。


首先定义一下纹理图片,他是一个随一下变量变化的函数:纹理表面材质,反射率,光照,照相机和他的角度。
现在纹理分类比较流行的有两种方法:一个是全局特征,如lbp,gabor,另一种是基于局部特征的,如:harris-laplace,基于局部特征的方法主要基于texton的框架,也就是现在图片分类的bag-of-words框架。

今天我们先介绍一下基于全局的特征,全局特征当属LBP最牛最简单有效,下面我们来介绍一下lbp及其变种。

1. LBP

以R为半径的P点邻域,gc为中心,gp为邻域点 ;区分邻域比中心亮度大还是小


改变P,R 形成多尺度LBP

 2. uniform LBP    P*(P-1)+2个

 二值编码中0-1转换次数小于或等于2的编码;  U<=2:


P=8,7*8+2=58个编码值,其余的U>2的归为一个bin


3. 旋转不变的LBP : 36个

 由于编码的起始点是一定的,每一种二值编码模式经旋转(循环位移)后会产生不同的编码结果。

为了形成旋转不变的编码模式,我们让有同一编码模式经旋转后产生的编码结果编码为同一值,即这些旋转结果中的最小值


36个旋转不变的LBP编码模式:


4. 旋转不变的uniform LBP   P+1个

即在uniform LBP中,开始7行的每一行为旋转不变,被编为一个编码值,对应上图中第一行的1-7个模式。再加上 全1和全0  共9个



 --------------------------------以上就是经典的LBP了,下面介绍一些变种----------------

一. 增加幅值信息,增加对噪声鲁棒性

1. LTP 

对二值化设定阈值 

三值编码:使相对中心值变化在t范围内的邻域量化为0;比ic大于t的量化为1;比ic小于t的量化为-1



最后把三值编码转化为正的和负的两部分,2个8bit编码作为特征向量;



2. CLBP

像素值差分为符号和幅值两项考虑 ,对符号的编码CLBP_S和LBP一样 ( 8位)



 对差的幅值Mp编码(8位):  C为全图像的所有mp的均值


对中心象数值gc编码(2位):Ci为全图像象数均值



 最后构建3D联合直方图CLBP_S/M/C ,列化作为特征向量

 二. 加入局部方差信息(局部对比度)


1. 

在训练集上得到局部方差的量化阈值,对局部方差进行量化,与

计算联合直方图

缺点:由于训练和测试图片成像条件不同,训练的量化阈值可能在测试图片上不适合


2.  LBP-V

将每个点的方差作为编码值的权重,进行直方图累加(类比sitf中按方向累计梯度幅值)。原理:方差大,对应区域变化大,为高频区域,对区分性贡献大,所以对应该处编码权重大



三. 增加局部梯度信息(类比SIFT)

1. CS-LBP

对中心对称点的亮度差编码,即编码四方向的梯度符号,缩短编码长度




2. TP-LBP

 编码某中心像数点的相邻patch的相似度 提取patch-based的信息,是对pixels-based的信息的补充中心patch和邻域patch大小为w*w;邻域半径r,邻域patch个数S,提取相似度信息的邻域间隔a,d(a,b)为a,b patch的相似度,编码局部patch的变化程度






3. POEM

 编码局部区域个方向patch内的梯度变化信息

(1) 计算梯度:方向和大小,对方向离散化m个

(2) 对每点,按离散方向,累积半径为r邻域内的梯度幅值(高斯加权),形成m个累积梯度幅值图像

(3) 对每个图像,计算半径R,邻域P的LBP,形成m个LBP



4. LDP

 编码每点的各方向边缘响应强度的变化

(1) 计算8方向边缘响应



(2) 取第K主方向值Mk(即第k大的边缘响应幅值)作为阈值,进行二值化形成编码。有C_8_k种编码值



四. 对U-LBP的改进

1. H-LBP

层叠的多多尺度LBP

ULBP将U>2的编码都对归入到一个bin中,丢失了其中的区分信息。

半径越大非uniform编码出现频率越高,而大半径中为非uniform的编码在小半径时可能为uniform形式,此时把其编码换为小半径中uniform形式,直至半径缩小为指定大小


©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页