opencv学习笔记-ml模块中的svm使用

这篇博客介绍了如何在OpenCV中使用SVM进行模式识别和回归,基于libsvm库。作者通过设置训练样本、调整SVM参数、训练和分类,展示了SVM的工作流程。在VS2010环境下,使用OpenCV2.4.6生成随机点并进行分类,同时显示了支持向量的空间分布。
摘要由CSDN通过智能技术生成

       之前我使用过matlab和python写过svm,这次想尝试一下opencv的svm。opencv中的svm是基于libsvm软件开发的,libsvm是台湾大学林智仁等开发的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包。用OpenCV使用SVM算法的大概流程是:

       1.设置训练样本集

       2.设置sVM参数

       3.训练SVM

       4.用训练好的SVM进行分类

       5.获得支持向量

下面是我进行的一个小测试:

平台:OpenCV2.4.6 + VS2010

        步骤:

       1,生成随机的点,并按一定的空间分布将其归类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值