#1 问题

已知:
- 已知点的坐标A1,A2,A3,A4,A5,A6
- 已知点与待定点的距离d1,d2,d3,d4,d5,d6
求解待定点的坐标
2 思路
利用未知参数表示的观测值方程:
未知参数有:
- N点坐标X,Y
- 误差项vi
求解未知数只需要3个方程
即3个方程有唯一解,3个以上的方程有多个解
But:在实际项目中,观测值d含有误差,那么如何确定最佳解
利用最小二乘法估计最优解,中误差指标来评定其精度
最小二乘法:控制最小的误差,使结果与真值接近。拟合多个解,再得出最优解
如何控制最小误差呢:
- V观测值改正数矩阵
- P观测值得权阵(权重矩阵,权重相同可为单位矩阵)
3 求解思路
现在误差方程为非线性(二次方程),必须转成一次得到简化形式,才可以使用最小二乘法原理
-
令
分别为待定坐标的近似值、修正值
-
将式子用泰勒展开取一次项(降幂),得到一次的方程式:
-
最后,根据最小二乘平差求解未知数:
-
精度分析:单位权中误差
附:泰勒展开公式
4 公式总结
公式
其中:
-
已知
待定坐标N的近似值(X0,Y0)
其他点坐标(Xi,Yi)
各点到N的距离di -
未知
将公式化成矩阵的形式
其中:
注意:L最后还需要乘一个1000,换成mm单位,其为误差的意思
根据最小二乘法求解出误差X
精度分析
单位权中误差
计算
xi,yi,x0,y0,di为已知数–>根据以上公式求解出,其他列–>写出A、L–>根据公式,求解出X(误差值)
使用Excel计算相关参数:
得到A,L,根据最小二乘法求解得(使用matlab计算):
X =
-2.51106
0.63905
经修正后的待定点坐标为:之前L转成了mm,这里也需要除以1000
X = X0 -2.51106/1000
Y = Y0 +0.63905/1000
参考文章:http://mp.weixin.qq.com/s/MSswKzWuziBHEvbZbEkeVw