1. Motivation:已有知识表示学习方法在稠密KG上性能较好,但对长尾实体表达能力会受限;由于KG语义特征有限,有方法引入外部信息如实体描述进行学习,对文本数据编码会带来高计算成本;为了不损失性能情况下提升嵌入表示质量,本文提出一种对抗迁移网络,通过对齐的实体集将知识从一个或多个teacher KG传输到target KG,而不出现显式的数据泄漏。不需要获取teacher KG中的关系和三元组,只使用实体的表示。
2. 核心思想:给定一个teacher KG, 一个target KG以及构建的对齐的实体集合,将teacher KG中特征迁移到target KG
针对如何迁移特征:距离约束(distance constraint),三元组约束(triplet constraint)
针对如何有效迁移特征:对抗性适应模块(adversarial adaption module)解决teacher和target KG可能的分布差异;判别器评估对齐实体对的嵌入表示的一致性,一致性分数作为软约束的权重;
3. 两种迁移场景:对齐的实体概念相同/有效(transferable);概念不同/无效(not transferable)
4. 整体框架图:
(1) embedding module: transe
(2) embedding transfer module:
a. 距离约束:对齐的实体的嵌入表示在目标空间应该尽可能地靠近;通过cosine距离实现
b. teacher实体应该符合对齐的目标实体对应的三元组;通过三元组上基于margin的loss实现
训练目标:
(3)adversarial adaption module: 根据对齐实体的一致性动态地适应约束的权重,通过条件生成对抗网络实现;(对齐实体对语义不总一致,邻居越相似,约束提供的监督就越强)
a. 条件分布:
b. 判别器的训练:
输出作为前面两种约束的权重,适应后的距离函数定义为:
5. 实验:
(1)数据集:两个双语数据集和一个tri-source数据集
(2)KGC:为给定三元组预测缺失的头/尾实体
(3)Baselines:
a. 浅层表示模型: TransE, DistMult, ComplEx, RotatE;
b. CTransE:不包含对抗性适应模块的迁移表示
(4.1) 相比表示学习模型,在大多数指标上达到最优;相比基于transfer的baseline,在所有指标上优于CTransE,说明动态权重可以提升性能
(4.2) ablation study: 说明两种constraints的重要性;结论:两种约束都有作用
(4.3) 在其他embedding模型上的扩展:ATransE (DistMult/ ComplEx/ RotatE)
(4.4) 在teacher KGs上的扩展:
a. teacher KGs用不同的语言,不同的对齐比例,不同的数据源;
b. 多个teacher KGs
结论:可以用于有不同语言以及不同来源的两个KG,不需要teacher KG比target KG稠密,从不同teacher KGs的迁移学习过程不会互相影响;
(4.5)超参的影响