Labyrinth
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 960 Accepted Submission(s): 424
Problem Description
度度熊是一只喜欢探险的熊,一次偶然落进了一个m*n矩阵的迷宫,该迷宫只能从矩阵左上角第一个方格开始走,只有走到右上角的第一个格子才算走出迷宫,每一次只能走一格,且只能向上向下向右走以前没有走过的格子,每一个格子中都有一些金币(或正或负,有可能遇到强盗拦路抢劫,
度度熊身上金币可以为负,需要给强盗写欠条),度度熊刚开始时身上金币数为0,问度度熊走出迷宫时候身上最多有多少金币?
Input
输入的第一行是一个整数T(T < 200),表示共有T组数据。
每组数据的第一行输入两个正整数m,n(m<=100,n<=100)。接下来的m行,每行n个整数,分别代表相应格子中能得到金币的数量,每个整数都大于等于-100且小于等于100。
每组数据的第一行输入两个正整数m,n(m<=100,n<=100)。接下来的m行,每行n个整数,分别代表相应格子中能得到金币的数量,每个整数都大于等于-100且小于等于100。
Output
对于每组数据,首先需要输出单独一行”Case #?:”,其中问号处应填入当前的数据组数,组数从1开始计算。
每组测试数据输出一行,输出一个整数,代表根据最优的打法,你走到右上角时可以获得的最大金币数目。
每组测试数据输出一行,输出一个整数,代表根据最优的打法,你走到右上角时可以获得的最大金币数目。
Sample Input
2 3 4 1 -1 1 0 2 -2 4 2 3 5 1 -90 2 2 1 1 1 1
Sample Output
Case #1: 18 Case #2: 4
思路:走过一列以后一定不能再回去了,所以我们一列一列的分析,因为每个点只能走一次,所以到这个点的路径一定是由上面的某个点一直往下走到了这个点,或者是由下面的某个点一直往上走到了这个点,或者是直接由上一列走过来的。所以我们需要从上到下或从下到上各自DP一遍,然后取这个点两次DP的最大值作为这个点的最大权值。因为输入有负数,所以在初始化的时候要特别注意~
#include<bits/stdc++.h>
#define INF 0x3fffffff
using namespace std;
int a[105][105];
int dp1[105][105];
int dp2[105][105];
int dp[105][105];
int main(){
for(int i = 0; i <= 104; i++){
for(int j = 0; j <= 104; j++){
dp1[i][j] = -INF;
dp2[i][j] = -INF;
dp[i][j] = -INF;
}
}
int T,t =1;
scanf("%d",&T);
while(T--){
int n,m;
scanf("%d%d",&n,&m);
for(int i =1; i <= n; i++)
for(int j = 1; j <= m; j++)
scanf("%d",&a[i][j]);
dp[1][0] = 0;
for(int i = 1; i <= m; i++){
for(int j = 1; j<= n; j++){
dp1[j][i] = a[j][i]+ max(dp1[j-1][i],dp[j][i-1]);
}
for(int j = n; i!=1&&j >= 1; j--){
dp2[j][i] = a[j][i]+ max(dp2[j+1][i],dp[j][i-1]);
}
for(int j = 1; j <= n; j++)
dp[j][i] = max(dp1[j][i],dp2[j][i]);
}
printf("Case #%d:\n%d\n",t++,dp[1][m]);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++){
dp[i][j] = -INF;
dp1[i][j] = -INF;
dp2[i][j] = -INF;
}
}
}