洛谷 P2615 [NOIP2015 提高组] 神奇的幻方

题目背景

NOIp2015 提高组 Day1T1

题目描述

幻方是一种很神奇的 N×N 矩阵:它由数字 1,2,3,⋯⋯,N×N 构成,且每行、每列及两条对角线上的数字之和都相同。

当 N 为奇数时,我们可以通过下方法构建一个幻方:

首先将 11 写在第一行的中间。

之后,按如下方式从小到大依次填写每个数K (K=2,3,⋯,N×N) :

  1. 若(K−1) 在第一行但不在最后一列,则将 K 填在最后一行,(K−1) 所在列的右一列;
  2. 若 (K−1) 在最后一列但不在第一行,则将 K 填在第一列, (K−1) 所在行的上一行;
  3. 若 (K−1) 在第一行最后一列,则将 K 填在 (K−1) 的正下方;
  4. 若 (K−1) 既不在第一行,也不在最后一列,如果 (K−1) 的右上方还未填数,则将 K 填在 (K−1) 的右上方,否则将 K 填在 (K−1) 的正下方。

现给定 N ,请按上述方法构造N×N 的幻方。

输入格式

一个正整数 N,即幻方的大小。

输出格式

共 N 行,每行 N 个整数,即按上述方法构造出的 N×N 的幻方,相邻两个整数之间用单空格隔开。

输入输出样例

输入 #1复制

3

输出 #1复制

8 1 6
3 5 7
4 9 2

说明/提示

对于 100% 的数据,对于全部数据, 1≤N≤39 且 N 为奇数。

思路 

因为:

  1. 若(K−1) 在第一行但不在最后一列,则将 K 填在最后一行,(K−1) 所在列的右一列;
  2. 若 (K−1) 在最后一列但不在第一行,则将 K 填在第一列, (K−1) 所在行的上一行;
  3. 若 (K−1) 在第一行最后一列,则将 K 填在 (K−1) 的正下方;
  4. 若 (K−1) 既不在第一行,也不在最后一列,如果 (K−1) 的右上方还未填数,则将 K 填在 (K−1) 的右上方,否则将 K 填在 (K−1) 的正下方。

所以:

      当前一个数的坐标符合以上任意一条件时,对当前数的x和y坐标进行更改并填数,继续递归直到n*n数组被填完.

      需要注意的是:要先找好第一个数的位置,第一个数在第一行的最中间,由于n是奇数,所以它的x坐标为1,y坐标为n/2+1.

AC代码

#include <bits/stdc++.h>

using namespace std;

int a[50][50],n;    //初始化定义

void dfs(int num,int x,int y)
{
    if(num==n*n+1) return;  //递归边界
    if(x==1 && y!=n)                  
    {                          
        x=n;       
        y++;
    }
    else if(x!=1 && y==n)
    {
        x--;
        y=1;
    }
    else if(x==1 && y==n)
    {
        x++;
    }
    else if(x!=1 && y!=n)
    {
        if(a[x-1][y+1]==0)
        {
            x--;
            y++;
        }
        else
        {
            x++;
        }
    }
    a[x][y]=num;
    dfs(num+1,x,y);
}

int main()
{
    cin>>n;
    int y=n/2+1;
    int x=1;
    a[x][y]=1;     //寻找第一个数所放的位置
    dfs(2,x,y);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            cout<<a[i][j]<<" ";    //打印幻方
        }
        cout<<endl;
    }
    return 0;
}

测试点信息

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值