数据结构实验之图论一:基于邻接矩阵的广度优先搜索遍历
Problem Description
给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索(BFS)遍历,输出从某个顶点出发的遍历序列。(同一个结点的同层邻接点,节点编号小的优先遍历)
Input
输入第一行为整数n(0< n <100),表示数据的组数。
对于每组数据,第一行是三个整数k,m,t(0<k<100,0<m<(k-1)*k/2,0< t<k),表示有m条边,k个顶点,t为遍历的起始顶点。
下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
Output
输出有n行,对应n组输出,每行为用空格隔开的k个整数,对应一组数据,表示BFS的遍历结果。
Sample Input
1
6 7 0
0 3
0 4
1 4
1 5
2 3
2 4
3 5
Sample Output
0 3 4 2 5 1
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#define INF 0x3f3f3f3f
using namespace std;
int map[110][110],vis[110],queue[110];
int n,k,m,t,head,tail;
void bfs(int x)
{
// int Next[4][2]={{0,1},{0,-1},{1,0},{-1,0}};
head=0,tail=0;
queue[tail++]=t;
while(head<tail)
{
x=queue[head];
for(int i=0; i<k; i++)
{
if(vis[i]==0&&map[x][i])
{
vis[i]=1;
queue[tail++]=i;
}
}
head++;
}
}
int main()
{
scanf("%d",&n);
while(n--)
{
scanf("%d%d%d",&k,&m,&t);
memset(map,0,sizeof(map));
memset(vis,0,sizeof(vis));
while(m--)
{
int u,v;
scanf("%d%d",&u,&v);
map[u][v]=map[v][u]=1;
}
vis[t]=1;
bfs(t);
for(int i=0;i<tail;i++)
{
if(i==tail-1)printf("%d\n",queue[i]);
else printf("%d ",queue[i]);
}
}
return 0;
}