最短路径问题

最短路径问题

Problem Description
平面上有n个点(n<=100),每个点的坐标均在-10000~10000之间。其中的一些点之间有连线。若有连线,则表示可从一个点到达另一个点,即两点间有通路,通路的距离为两点间的直线距离。现在的任务是找出从一点到另一点之间的最短距离。
Input
第1行为整数n。
第2行到第n+1行(共n行),每行两个整数x和y,描述了一个点的坐标(以一个空格分隔)。
第n+2行为一个整数m,表示图中连线的个数。
此后的m行,每行描述一条连线,由两个整数i和j组成,表示第1个点和第j个点之间有连线。
最后一行:两个整数s和t,分别表示源点和目标点。
Output
仅1行,一个实数(保留两位小数),表示从s到t的最短路径长度。
Sample Input
5
0 0
2 0
2 2
0 2
3 1
5
1 2
1 3
1 4
2 5
3 5
1 5
Sample Output
3.41

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#define inf 0x3f3f3f3f
double ma[110][110];
int n,m;
int s,e;
struct node
{
    int x,y;
}q[110];
void flord()
{
    int i,j,k;
    for(k=1;k<=n;k++)
        for(i=1;i<=n;i++)
            for(j=1;j<=n;j++)
            if(ma[i][k]!=inf&&ma[k][j]!=inf&&ma[i][j]>ma[i][k]+ma[k][j])//Flord算法关键
                         ma[i][j]=ma[i][k]+ma[k][j];
    if(ma[s][e]!=inf)
        printf("%.2lf\n",ma[s][e]);
    else
        printf("-1\n");
}
int main()
{
    int i,j;
    double z;
    int a,b;
    scanf("%d",&n);
    for(i=1;i<=n;i++)
        {
            for(j=1;j<=n;j++)
            {
                ma[i][j]=inf;
                if(i==j)
                    ma[i][j]=0;
            }
        }
    for(i=1;i<=n;i++)
        scanf("%d %d",&q[i].x,&q[i].y);
    scanf("%d",&m);
    for(i=0;i<m;i++)
    {
        scanf("%d %d",&a,&b);
        int x1=q[a].x-q[b].x;
        int y1=q[a].y-q[b].y;
        z=(double)sqrt(x1*x1+y1*y1);
        if(ma[a][b]>z)
        {
            ma[a][b]=z;
            ma[b][a]=z;
        }
    }
    scanf("%d %d",&s,&e);
    flord();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值