最短路径问题
Problem Description
平面上有n个点(n<=100),每个点的坐标均在-10000~10000之间。其中的一些点之间有连线。若有连线,则表示可从一个点到达另一个点,即两点间有通路,通路的距离为两点间的直线距离。现在的任务是找出从一点到另一点之间的最短距离。
Input
第1行为整数n。
第2行到第n+1行(共n行),每行两个整数x和y,描述了一个点的坐标(以一个空格分隔)。
第n+2行为一个整数m,表示图中连线的个数。
此后的m行,每行描述一条连线,由两个整数i和j组成,表示第1个点和第j个点之间有连线。
最后一行:两个整数s和t,分别表示源点和目标点。
Output
仅1行,一个实数(保留两位小数),表示从s到t的最短路径长度。
Sample Input
5
0 0
2 0
2 2
0 2
3 1
5
1 2
1 3
1 4
2 5
3 5
1 5
Sample Output
3.41
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#define inf 0x3f3f3f3f
double ma[110][110];
int n,m;
int s,e;
struct node
{
int x,y;
}q[110];
void flord()
{
int i,j,k;
for(k=1;k<=n;k++)
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(ma[i][k]!=inf&&ma[k][j]!=inf&&ma[i][j]>ma[i][k]+ma[k][j])//Flord算法关键
ma[i][j]=ma[i][k]+ma[k][j];
if(ma[s][e]!=inf)
printf("%.2lf\n",ma[s][e]);
else
printf("-1\n");
}
int main()
{
int i,j;
double z;
int a,b;
scanf("%d",&n);
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
ma[i][j]=inf;
if(i==j)
ma[i][j]=0;
}
}
for(i=1;i<=n;i++)
scanf("%d %d",&q[i].x,&q[i].y);
scanf("%d",&m);
for(i=0;i<m;i++)
{
scanf("%d %d",&a,&b);
int x1=q[a].x-q[b].x;
int y1=q[a].y-q[b].y;
z=(double)sqrt(x1*x1+y1*y1);
if(ma[a][b]>z)
{
ma[a][b]=z;
ma[b][a]=z;
}
}
scanf("%d %d",&s,&e);
flord();
return 0;
}