直方图反向投影车牌识别

本文介绍了利用直方图反向投影进行车牌识别的方法。首先,通过已知模板计算特征图像的直方图,特别是车牌的蓝色通道。接着,使用此直方图模型匹配待检测图片,通过计算反向投影矩阵判断图像的相似性。OpenCV的calcBackProjection函数用于实现这一过程,其参数包括输入图像、直方图等。最后,提供了完整的代码实现。
摘要由CSDN通过智能技术生成

思路

1、车牌识别

1、用已知的模板,提取出感兴趣的区域作为特征图像,并计算这个区域的直方图(OpenCV中calaHist函数只可计算单通道,车牌为蓝色背景,可分离通道后计算蓝色通道)
在这里插入图片描述
图一
2、用上述直方图模型来匹配要检测的图片,也就是要检测的车牌。在这里插入图片描述

图二
3、用计算出图一的蓝色通道直方图来匹配图二的图片
如果两幅图的反向投影矩阵相似或相同,那么我们就可以判定这两幅图这个特征是相同的

在这里插入图片描述

图像的反向投影图是用输入图像的某一位置上像素值(多维或灰度)对应在直方图的一个bin上的值来代替该像素值,所以得到的反向投影图是单通的。
反向投影中的“反向”指的是从直方图值到反向投影矩阵映射的过程

OpenCV函数calaHist()

split(// 把多通道图像分为多个单通道图像
const Mat &src, //输入图像
Mat* mvbegin)// 输出的通道图像数组
calcHist(
 const Mat* images,//输入图像指针
int images,// 图像数目
const int* channels,// 通道数
InputArray mask,// 输入mask,可选,不用
OutputArray hist,//输出的直方图数据
int dims,// 维数
const int* histsize,// 直方图级数
const float* ranges,// 值域范围
bool uniform,// true by default
bool accumulate// false by defaut
)
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sun_rui_houqi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值