思路
1、车牌识别
1、用已知的模板,提取出感兴趣的区域作为特征图像,并计算这个区域的直方图(OpenCV中calaHist函数只可计算单通道,车牌为蓝色背景,可分离通道后计算蓝色通道)
图一
2、用上述直方图模型来匹配要检测的图片,也就是要检测的车牌。
图二
3、用计算出图一的蓝色通道直方图来匹配图二的图片
如果两幅图的反向投影矩阵相似或相同,那么我们就可以判定这两幅图这个特征是相同的
图像的反向投影图是用输入图像的某一位置上像素值(多维或灰度)对应在直方图的一个bin上的值来代替该像素值,所以得到的反向投影图是单通的。
反向投影中的“反向”指的是从直方图值到反向投影矩阵映射的过程
OpenCV函数calaHist()
split(// 把多通道图像分为多个单通道图像
const Mat &src, //输入图像
Mat* mvbegin)// 输出的通道图像数组
calcHist(
const Mat* images,//输入图像指针
int images,// 图像数目
const int* channels,// 通道数
InputArray mask,// 输入mask,可选,不用
OutputArray hist,//输出的直方图数据
int dims,// 维数
const int* histsize,// 直方图级数
const float* ranges,// 值域范围
bool uniform,// true by default
bool accumulate// false by defaut
)
<