luogu P4726 多项式指数函数(模板题FFT、多项式求逆、多项式对数函数)

题目链接: https://www.luogu.org/problem/show?pid=4726

题意: 给定 n n n次多项式 A ( x ) A(x) A(x) 求多项式 f ( x ) f(x) f(x)满足 f ( x ) ≡ e A ( x ) ( m o d    x n ) f(x)\equiv e^{A(x)} (\mod x^n) f(x)eA(x)(modxn)

题解

这个比对数函数复杂一些。。
前铺知识
泰勒展开
对于一个函数,我们可以用以下方式用它的高阶导数进行无穷逼近: f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) ( x − a ) 2 2 ! + f ′ ′ ′ ( a ) ( x − a ) 3 3 ! + . . . f(x)=f(a)+f'(a)(x-a)+f''(a)\frac{(x-a)^2}{2!}+f'''(a)\frac{(x-a)^3}{3!}+... f(x)=f(a)+f(a)(xa)+f(a)2!(xa)2+f(a)3!(xa)3+...
牛顿迭代
已知要求的多项式 f f f满足 g ( f ( x ) ) ≡ 0 ( m o d    x n ) g(f(x))\equiv 0(\mod x^n) g(f(x))0(modxn) g g g已知,那么可以通过如下的方式倍增求解:
假设求出了原问题 m o d    x n \mod x^n modxn的答案 f 0 ( x ) f_0(x) f0(x), 考虑转移到 f ( x ) m o d    x 2 n f(x) \mod x^{2n} f(x)modx2n.
根据泰勒展开公式: 0 = g ( f ) = g ( f 0 ) + g ′ ( f 0 ) ( f − f 0 ) + g ′ ′ ( f 0 ) ( f − f 0 ) 2 2 ! + . . . 0=g(f)=g(f_0)+g'(f_0)(f-f_0)+g''(f_0)\frac{(f-f_0)^2}{2!}+... 0=g(f)=g(f0)+g(f0)(ff0)+g(f0)2!(ff0)2+...
但是,由于一个显然的结论—— f ≡ f 0 ( m o d    x n ) f\equiv f_0(\mod x^n) ff0(modxn), 因此 ( f − f 0 ) 2 ≡ 0 ( m o d    x 2 n ) (f-f_0)^2\equiv 0(\mod x^{2n}) (ff0)20(modx2n), 因此公式里只需要计算前两项,后面的项都在 m o d    x 2 n \mod x^{2n} modx2n意义下为 0 0 0!
g ( f 0 ) + g ′ ( f 0 ) ( f − f 0 ) = 0 g(f_0)+g'(f_0)(f-f_0)=0 g(f0)+g(f0)(ff0)=0
f = f 0 − g ( f 0 ) g ′ ( f 0 ) f=f_0-\frac{g(f_0)}{g'(f_0)} f=f0g(f0)g(f0)
如此即可求解。
(太神了啊太神了啊呜呜呜。。我大概永远也搞不出这么神奇的东西吧。。)

本题题解
根据牛顿迭代的法则,令 g ( f ) = ln ⁡ f − A g(f)=\ln f-A g(f)=lnfA, 则 f = f 0 − ln ⁡ f 0 − A 1 f 0 = f 0 ( 1 − ln ⁡ f 0 + A ) f=f_0-\frac{\ln f_0-A}{\frac{1}{f_0}}=f_0(1-\ln f_0+A) f=f0f01lnf0A=f0(1lnf0+A)
递归求解即可。
值得注意的是FFT的大小
A A A应该带入 2 n 2n 2n次, ln ⁡ f 0 \ln f_0 lnf0应该带入 2 n 2n 2n次, f 0 f_0 f0应该带入 n n n次, FFT乘法因为是 2 n 2n 2n次乘以 n n n次,所以应该取到 4 n 4n 4n个单位根。
FFT这个地方太容易出错了!范围大了常数大好几倍,范围小了就会出错。
时间复杂度为 T ( n ) = T ( n 2 ) + O ( n log ⁡ n ) T(n)=T(\frac{n}{2})+O(n\log n) T(n)=T(2n)+O(nlogn), T ( n ) = O ( n log ⁡ n ) T(n)=O(n\log n) T(n)=O(nlogn)
常数我算的应该是 48 48 48倍。每次 n n n 2 n 2n 2n的迭代需要做一次 2 n 2n 2n ln ⁡ \ln ln和三次 4 n 4n 4n的DFT/IDFT. 因此 18 ( 2 n log ⁡ n ) + 3 ( 4 n log ⁡ n ) = 48 n log ⁡ n 18(2n\log n)+3(4n\log n)=48n\log n 18(2nlogn)+3(4nlogn)=48nlogn.
(飞了……)

代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define llong long long
#define ldouble long double
#define uint unsigned int
#define ullong unsigned long long
#define udouble unsigned double
#define uldouble unsigned long double
#define modinc(x) {if(x>=P) x-=P;}
#define pii pair<int,int>
#define piii pair<pair<int,int>,int>
#define piiii pair<pair<int,int>,pair<int,int> >
#define pli pair<llong,int>
#define pll pair<llong,llong>
#define Memset(a,x) {memset(a,x,sizeof(a));}
using namespace std;

const int N = 1<<19;
const int LGN = 19;
const int G = 3;
const int P = 998244353;
llong tmp1[N+3],tmp2[N+3],tmp3[N+3],tmp4[N+3]; //inv
llong tmp5[N+3],tmp6[N+3],tmp7[N+3],tmp8[N+3]; //ln
llong tmp9[N+3],tmp10[N+3],tmp11[N+3],tmp12[N+3]; //exp
llong a[N+3],b[N+3];
int id[N+3];
int n;

llong quickpow(llong x,llong y)
{
 llong cur = x,ret = 1ll;
 for(int i=0; y; i++)
 {
  if(y&(1ll<<i))
  {
   ret = ret*cur%P;
   y-=(1ll<<i);
  }
  cur = cur*cur%P;
 }
 return ret;
}
llong mulinv(llong x) {return quickpow(x,P-2);}

void initid(int dgr)
{
 int len = 0;
 for(int i=0; i<=LGN; i++) if(dgr==(1<<i)) {len = i; break;}
 id[0] = 0;
 for(int i=1; i<dgr; i++) id[i] = (id[i>>1]>>1)|((i&1)<<(len-1));
}

void ntt(int dgr,int coe,llong poly[],llong ret[])
{
 initid(dgr);
 for(int i=0; i<dgr; i++) ret[i] = poly[i];
 for(int i=0; i<dgr; i++) if(i<id[i]) swap(ret[i],ret[id[i]]);
 for(int i=1; i<=(dgr>>1); i<<=1)
 {
  llong tmp = quickpow(G,(P-1)/(i<<1));
  if(coe==-1) tmp = mulinv(tmp);
  for(int j=0; j<dgr; j+=(i<<1))
  {
   llong expn = 1ll;
   for(int k=0; k<i; k++)
   {
    llong x = ret[j+k],y = ret[j+k+i]*expn%P;
    ret[j+k] = x+y; modinc(ret[j+k]);
    ret[j+i+k] = x-y+P; modinc(ret[j+i+k]);
    expn = (expn*tmp)%P;
   }
  }
 }
 if(coe==-1)
 {
  llong tmp = mulinv(dgr);
  for(int j=0; j<dgr; j++) ret[j] = ret[j]*tmp%P;
 }
}

void polyinv(int dgr,llong poly[],llong ret[])
{
 for(int i=0; i<dgr; i++) ret[i] = 0ll;
 ret[0] = mulinv(poly[0]);
 for(int i=1; i<=(dgr>>1); i<<=1)
 {
  for(int j=0; j<(i<<2); j++) tmp1[j] = j<i ? ret[j] : 0ll;
  for(int j=0; j<(i<<2); j++) tmp2[j] = j<(i<<1) ? poly[j] : 0ll;
  ntt((i<<2),1,tmp1,tmp3); ntt((i<<2),1,tmp2,tmp4);
  for(int j=0; j<(i<<2); j++) tmp3[j] = tmp3[j]*tmp3[j]%P*tmp4[j]%P;
  ntt((i<<2),-1,tmp3,tmp4);
  for(int j=0; j<(i<<1); j++) ret[j] = (tmp1[j]+tmp1[j]-tmp4[j]+P)%P;
 }
 for(int i=dgr; i<(dgr<<1); i++) ret[i] = 0ll;
}

void polyder(int dgr,llong poly[],llong ret[])
{
 for(int i=0; i<dgr-1; i++) ret[i] = poly[i+1]*(i+1)%P;
}

void polyint(int dgr,llong poly[],llong ret[])
{
 for(int i=1; i<dgr; i++) ret[i] = poly[i-1]*mulinv(i)%P;
}

void polyln(int dgr,llong poly[],llong ret[])
{
 for(int i=0; i<dgr; i++) ret[i] = 0ll;
 polyder(dgr,poly,tmp5);
 polyinv(dgr,poly,tmp6);
 ntt((dgr<<1),1,tmp5,tmp7); ntt((dgr<<1),1,tmp6,tmp8);
 for(int i=0; i<(dgr<<1); i++) tmp7[i] = tmp7[i]*tmp8[i]%P;
 ntt((dgr<<1),-1,tmp7,tmp8);
 polyint(dgr,tmp8,ret);
}

void polyexp(int dgr,llong poly[],llong ret[])
{
 for(int i=0; i<dgr; i++) ret[i] = i==0;
 for(int i=1; i<=(dgr>>1); i<<=1)
 {
  for(int j=0; j<(i<<2); j++) tmp9[j] = j>=(i<<1) ? 0ll : ((j==0)+poly[j])%P;
  for(int j=0; j<(i<<2); j++) tmp10[j] = j>=i ? 0ll : ret[j];
  polyln((i<<1),tmp10,tmp11);
  for(int j=0; j<(i<<1); j++) {tmp9[j] = tmp9[j]-tmp11[j]+P; modinc(tmp9[j]);}
  ntt((i<<2),1,tmp10,tmp12); ntt((i<<2),1,tmp9,tmp11);
  for(int j=0; j<(i<<2); j++) tmp12[j] = tmp12[j]*tmp11[j]%P;
  ntt((i<<2),-1,tmp12,tmp11);
  for(int j=0; j<(i<<1); j++) ret[j] = tmp11[j];
 }
}

int main()
{
 scanf("%d",&n); int dgr = 1; while(dgr<=n) dgr<<=1;
 for(int i=0; i<n; i++) scanf("%lld",&a[i]);
 polyexp(dgr,a,b);
 for(int i=0; i<n; i++) printf("%lld ",b[i]);
 return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值