洛谷传送门
题目描述
给出 n − 1 n-1 n−1 次多项式 A ( x ) A(x) A(x),求一个   m o d     x n \bmod{\:x^n} modxn 下的多项式 B ( x ) B(x) B(x),满足 B ( x ) ≡ ln A ( x ) B(x) \equiv \ln A(x) B(x)≡lnA(x).
在 mod 998244353 \text{mod } 998244353 mod 998244353 下进行,且 a i ∈ [ 0 , 998244353 ] ∩ Z a_i \in [0, 998244353] \cap \mathbb{Z} ai∈[0,998244353]∩Z
输入输出格式
输入格式:
第一行一个整数 n n n.
下一行有 n n n 个整数,依次表示多项式的系数 a 0 , a 1 , ⋯   , a n − 1 a_0, a_1, \cdots, a_{n-1} a0,a1,⋯,an−1.
保证 a 0 = 1 a_0 = 1 a0=1.
输出格式:
输出 n n n 个整数,表示答案多项式中的系数 a 0 , a 1 , ⋯   , a n − 1 a_0, a_1, \cdots, a_{n-1} a0,a1,⋯,an−1.
输入输出样例
输入样例#1:
6
1 927384623 878326372 3882 273455637 998233543
输出样例#1:
0 927384623 817976920 427326948 149643566 610586717
说明
对于 100 % 100\% 100% 的数据, n ≤ 1 0 5 n \le 10^5 n≤105.
解题分析
两边求导可得:
B
′
(
x
)
≡
A
′
(
x
)
A
(
x
)
(
m
o
d
x
n
)
B'(x)\equiv \frac{A'(x)}{A(x)}(mod\ x^n)
B′(x)≡A(x)A′(x)(mod xn)
求逆, 求导最后积分回来就好了。
代码如下:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cctype>
#include <algorithm>
#include <cstdlib>
#define R register
#define IN inline
#define W while
#define gc getchar()
#define MX 400500
#define MOD 998244353
#define G 3
#define Ginv 332748118
template <class T>
IN void in(T &x)
{
x = 0; R char c = gc;
for (; !isdigit(c); c = gc);
for (; isdigit(c); c = gc)
x = (x << 1) + (x << 3) + c - 48;
}
IN int fpow(R int base, R int tim)
{
int ret = 1;
W (tim)
{
if (tim & 1) ret = 1ll * ret * base % MOD;
base = 1ll * base * base % MOD, tim >>= 1;
}
return ret;
}
int n;
int rev[MX], a[MX], b[MX], A[MX], B[MX], Ainv[MX], Adr[MX], Bdr[MX];
namespace Poly
{
IN void NTT(int *dat, R int len, R bool typ)
{
for (R int i = 1; i < len; ++i) if (rev[i] > i) std::swap(dat[rev[i]], dat[i]);
R int seg, step, bd, now, cur, base, deal, buf1, buf2;
for (seg = 1; seg < len; seg <<= 1)
{
base = fpow(typ ? G : Ginv, (MOD - 1) / (seg << 1)), step = seg << 1;
for (now = 0; now < len; now += step)
{
deal = 1, bd = now + seg;
for (cur = now; cur < bd; cur++, deal = 1ll * deal * base % MOD)
{
buf1 = dat[cur], buf2 = 1ll * dat[cur + seg] * deal % MOD;
dat[cur] = (buf1 + buf2) % MOD, dat[cur + seg] = (buf1 - buf2 + MOD) % MOD;
}
}
}
if (typ) return; int inv = fpow(len, MOD - 2);
for (R int i = 0; i < len; ++i) dat[i] = 1ll * dat[i] * inv % MOD;
}
void Getinv(R int up, R int lg)
{
if (up == 1) return Ainv[0] = fpow(A[0], MOD - 2), void();
Getinv(up >> 1, lg - 1); R int len = up << 1;
for (R int i = 1; i < len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << lg - 1);
for (R int i = up; i < len; ++i) a[i] = b[i] = 0;
for (R int i = 0; i < up; ++i) a[i] = Ainv[i], b[i] = A[i];
NTT(a, len, 1), NTT(b, len, 1);
for (R int i = 0; i < len; ++i) a[i] = (2 * a[i] % MOD - 1ll * a[i] * a[i] % MOD * b[i] % MOD + MOD) % MOD;
NTT(a, len, 0);
for (R int i = 0; i < up; ++i) Ainv[i] = a[i];
}
IN void Dr() {for (R int i = 0; i < n; ++i) Adr[i] = 1ll * (i + 1) * A[i + 1] % MOD;}
IN void Itg() {for (R int i = 1; i < n; ++i) B[i] = 1ll * Bdr[i - 1] * fpow(i, MOD - 2) % MOD;}
IN void Getln()
{
Dr(); int len, lg;
for (len = 1, lg = 0; len < n; len <<= 1, lg++);
Getinv(len, lg + 1);
for (len = 1, lg = 0; len <= (n << 1); len <<= 1, lg++);
for (R int i = 1; i < len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << lg - 1);
for (R int i = 0; i < len; ++i) a[i] = b[i] = 0;
for (R int i = 0; i < n; ++i) a[i] = Adr[i];
for (R int i = 0; i < n; ++i) b[i] = Ainv[i];
NTT(a, len, 1), NTT(b, len, 1);
for (R int i = 0; i < len; ++i) a[i] = 1ll * a[i] * b[i] % MOD;
NTT(a, len, 0);
for (R int i = 0; i < n; ++i) Bdr[i] = a[i];
Itg();
for (R int i = 0; i < n; ++i) printf("%d ", B[i]);
}
}
int main(void)
{
in(n);
for (R int i = 0; i < n; ++i) in(A[i]);
Poly::Getln();
}