Matlab中CNN工具包简介(一)

本文介绍了在Matlab中使用CNN进行数据处理的基础知识,包括CNN的层级结构、核心组件如卷积层、激励层、池化层和全连接层的作用,以及数据预处理的重要性。此外,还提到了CNN在图像处理中的优势和MNIST数据集的应用。
摘要由CSDN通过智能技术生成

       之前对自己的数据运用了SVM,KNN,BP神经网络的分类方法,那接下来想尝试一下用CNN来处理自己的数据,虽然对CNN早有耳闻,但是从来没有真正去了解过,所以打算先从Matlab里的神经网络的toolbox开始了解一下CNN。只是大概的做一个了解,并不涉及误差传递公式等的推导,只是一个简易的笔记而已。

       卷积神经网络(CNN)相信大家都不陌生,它是多层感知机(MLP)的一个变种,它通过加强神经网络总相邻层之间节点的局部连接模式来挖掘自然图像的空间局部关联信息。在CNN中,每一个稀疏滤波器在整个感受野中是重复叠加的,如此重复的节点形成了一种特征图(featuremap),这个特征图可以共享相同的参数,比如相同的权值矩阵和偏置向量。

      CNN主要包括3个过程:

    (1)Feedforward pass(向前传播)

    (2)Calculate cost(误差计算)

    (3)Backpropagation(误差反向传播)

      其实,卷积神经网络依然是层级网络,只是层的功能和形式发生了变化。卷积神经网络主要包括的层级结构有:数据输入层(Input layer),卷积层(Conv layer),ReLU激励层(ReLU layer,简单的CNN好像没有涉及这一层)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值