【Machine Learning】【Andrew Ng】- notes(Week 1: Parameter Learning)

Gradient Descent

Imagine that we graph our hypothesis function based on its fields θ0 θ 0 and θ1 θ 1 (actually we are graphing the cost function as a function of the parameter estimates). We are not graphing x and y itself, but the parameter range of our hypothesis function and the cost resulting from selecting a particular set of parameters.
这里写图片描述
We will know that we have succeeded when our cost function is at the very bottom of the pits in our graph, i.e. when its value is the minimum. The red arrows show the minimum points in the graph.
The way we do this is by taking the derivative (the tangential line to a function) of our cost function. The slope of the tangent is the derivative at that point and it will give us a direction to move towards. We make steps down the cost function in the direction with the steepest descent. The size of each step is determined by the parameter α, which is called the learning rate.
For example, the distance between each ‘star’ in the graph above represents a step determined by our parameter α. A smaller α would result in a smaller step and a larger α results in a larger step. The direction in which the step is taken is determined by the partial derivative of J(θ0,θ1) J ( θ 0 , θ 1 ) . Depending on where one starts on the graph, one could end up at different points. The image above shows us two different starting points that end up in two different places.
The gradient descent algorithm is:
repeat until convergence:
这里写图片描述
where j=0,1 represents the feature index number.
At each iteration j, one should simultaneously update the parameters θ1 θ 1 , θ2 θ 2 ,…, θn θ n . Updating a specific parameter prior to calculating another one on the j(th) j ( t h ) iteration would yield to a wrong implementation.
这里写图片描述

Gradient Descent Intuition

In this video we explored the scenario where we used one parameter θ1 θ 1 and plotted its cost function to implement a gradient descent. Our formula for a single parameter was :
Repeat until convergence:
这里写图片描述
Regardless of the slope’s sign for ddθ1J(θ1) d d θ 1 J ( θ 1 ) , θ1 θ 1 eventually converges to its minimum value. The following graph shows that when the slope is negative, the value of θ1 θ 1 increases and when it is positive, the value of θ1 θ 1 decreases.
这里写图片描述
On a side note, we should adjust our parameter α α to ensure that the gradient descent algorithm converges in a reasonable time. Failure to converge or too much time to obtain the minimum value imply that our step size is wrong.
这里写图片描述
How does gradient descent converge with a fixed step size α α ?
The intuition behind the convergence is that ddθ1J(θ1) d d θ 1 J ( θ 1 ) approaches 0 as we approach the bottom of our convex function. At the minimum, the derivative will always be 0 and thus we get:
这里写图片描述
这里写图片描述

Gradient Descent For Linear Regression

When specifically applied to the case of linear regression, a new form of the gradient descent equation can be derived. We can substitute our actual cost function and our actual hypothesis function and modify the equation to :
这里写图片描述
where m is the size of the training set, θ0 θ 0 a constant that will be changing simultaneously with θ1 θ 1 and xi x i , yi y i are values of the given training set (data).
Note that we have separated out the two cases for θj θ j into separate equations for θ0 θ 0 and θ1 θ 1 ; and that for θ1 θ 1 we are multiplying xi x i at the end due to the derivative. The following is a derivation of θjJ(θ) ∂ ∂ θ j J ( θ ) for a single example:
这里写图片描述
The point of all this is that if we start with a guess for our hypothesis and then repeatedly apply these gradient descent equations, our hypothesis will become more and more accurate.
So, this is simply gradient descent on the original cost function J. This method looks at every example in the entire training set on every step, and is called batch gradient descent. Note that, while gradient descent can be susceptible to local minima in general, the optimization problem we have posed here for linear regression has only one global, and no other local, optima; thus gradient descent always converges (assuming the learning rate α is not too large) to the global minimum. Indeed, J is a convex quadratic function. Here is an example of gradient descent as it is run to minimize a quadratic function.
这里写图片描述
The ellipses shown above are the contours of a quadratic function. Also shown is the trajectory taken by gradient descent, which was initialized at (48,30). The x’s in the figure (joined by straight lines) mark the successive values of θ that gradient descent went through as it converged to its minimum.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值