代码随想录算法训练营day27 | 77. 组合

理论

回溯法也可以叫做回溯搜索法,它是一种搜索的方式。

回溯法并不是什么高效的算法。因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。

那么既然回溯法并不高效为什么还要用它呢?因为一些问题能暴力搜出来就不错了,撑死了再剪枝一下,还没有更高效的解法。

回溯法,一般可以解决如下几种问题:

  • 组合问题:N个数里面按一定规则找出k个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解数独等等

组合是不强调元素顺序的,排列是强调元素顺序。

回溯法解决的问题都可以抽象为树形结构,因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度就构成了树的深度。递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。

回溯的模板

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

77. 组合

使用模板进行解题

result和path可定义为全局变量

class Solution:
    def combine(self, n: int, k: int) -> List[List[int]]:
        result = []
        self.backtracking(1, n, k, result, [])
        return result

    def backtracking(self, start, end, k, result, path):
        if len(path) == k:
            result.append(path[:])
            return
        
        for i in range(start, end+1):
            path.append(i)
            self.backtracking(i+1, end, k, result, path)
            path.pop()

剪枝优化

如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了。

class Solution:
    def combine(self, n: int, k: int) -> List[List[int]]:
        result = []
        self.backtracking(1, n, k, result, [])
        return result

    def backtracking(self, start, end, k, result, path):
        if len(path) == k:
            result.append(path[:])
            return
        
        for i in range(start, end-(k-len(path))+2):
            path.append(i)
            self.backtracking(i+1, end, k, result, path)
            path.pop()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值