图的深度优先搜索-递归

图的深度优先搜索的过程:

(1)从图的某个顶点V出发,访问V.

(2)找出刚访问过的顶点的第一个未被访问的邻接点,访问该顶点。以该顶点为新顶点,重复此步骤,直到

刚顶点没有未bedi被访问的邻接点为止。

(3)返回前一个访问过的且仍有未被访问的邻接点的顶点,找出该din

顶点的下一个未被访问的邻接点,访问该顶点。

(4)重复步骤(2)和(3),直到图中所有的顶点都被访问过,搜索结束。

例如,上图的深度遍历过程如下:

(1)从a顶点出发,访问a。

(2)从a出发,访问第一个未被访问的邻接点b,访问b。以b作为新的起点,重复此步骤,访问e,c,d。

 

对于图的邻接表和邻接矩阵有不同的实现方式:

当图采用邻接表表示时:

//采用邻接表表示的图的深度优先搜索 
void DFS(ALGraph G,int v)
{//图G为邻接表类型
  cout<<G.vertices[v].data;
  visited[v]=true;//访问第v个顶点,并置为true
  ArcNode *p;
  p=G.vertices[v].firstarc;//p指向v的边链表的第一个边结点
  while(p!=NULL)//边结点非空
  {
     int w=p->adjvex;      //表示w是v的邻接点
     if(!visited[w]) DFS(G,w);//如果w未访问,递归
     p=p->nextarc;//      p指向下一个边结点
   }
}

当图采用邻接矩阵表示时:

//采用邻接矩阵表示图的深度优先遍历 
void DFS_AM(AMGraph &G, int v){
	cout<<G.vexs[v];
	visited[v]=true;
	for(int w=0;w<G.vexnum;w++){
		if(G.arcs[v][w]!=0 && (!visited[w])){
			DFS_AM(G, w);
		}
	} 
}

 

 

代码的具体实现如下:

1.

#include<stdio.h>
#include<stack> 
#include <iostream>
#define MAXSIZE 100
#define MaxInt 32767 //表示最大值,即正无穷大 
#define MVNum 100 //定义最大顶点数 
using namespace std;

//========================使用邻接表法表示图============================
typedef char VerTexType; //定义顶点数据类型为字符型
typedef int ArcType; //定义边的权值类型为整型
//定义边结点
typedef struct ArcNode{
	int adjvex; //该边所指向顶点的位置
	struct ArcNode *nextarc; //指向下一条边的指针 
}ArcNode; 
//定义顶点结点信息
typedef struct VNode{
	VerTexType data; 
	ArcNode *firstarc; //指向依附于该顶点的边的指针 
}VNode, AdjList[MVNum]; 
//定义连接表结构
typedef struct{
	AdjList vertices;
	int vexnum, arcnum; //当前图的顶点数和边数 
}ALGraph; 

bool visited[MVNum]; //访问标志数组,初试为false 
 
//==============================图的遍历和创建================================= 

//确定顶点vex在G.vertices中的序号 
int LocateVex(ALGraph &G, VerTexType vex){
	for(int i=0;i<G.vexnum;i++){
		if(G.vertices[i].data==vex){
			return i;
		}
	} 
}

//邻接表法创建无向图
void CreateUGD(ALGraph &G){
	printf("输入总顶点数:");
	cin>>G.vexnum;
	printf("输入总边数:");
	cin>>G.arcnum;
	//输入各个顶点,构造邻接表的表头结点表
	for(int i=0;i<G.vexnum;i++){
		printf("请输入第%d个顶点的信息:", (i+1));
		cin>>G.vertices[i].data;
		G.vertices[i].firstarc=NULL;
	} 
	//输入各边,构造邻接表
	for(int k=0;k<G.arcnum;k++){
		printf("请输入第%d条边的信息:\n", (k+1));
		printf("请输入边依附的第1个顶点:");
		VerTexType v1;
		cin>>v1;
		printf("请输入边依附的第2个顶点:");
		VerTexType v2;
		cin>>v2;
		//确定v1,v2在图G中的位置,即在G.vertices中的序号 
		int i=LocateVex(G, v1);
		int j=LocateVex(G, v2);
		struct ArcNode *p1, *p2;
		p1=new ArcNode; //生成一个新的边结点 
		p1->adjvex=j;
		p1->nextarc=G.vertices[i].firstarc;
		G.vertices[i].firstarc=p1;
		p2=new ArcNode; //生成另一个对称边结点p2 
		p2->adjvex=i;
		p2->nextarc=G.vertices[j].firstarc;
		G.vertices[j].firstarc=p2;
	} 
} 

//遍历图的邻接表 
void PrintfG(ALGraph &G){
	printf("遍历图的邻接表:\n");
	for(int i=0;i<G.vexnum;i++){
		printf("顶点%c ", G.vertices[i].data);
		ArcNode *p;
		p=G.vertices[i].firstarc;
		while(p){
			printf("%d ", p->adjvex);
			p=p->nextarc;
		}
	}
	printf("\n");
}

//采用邻接表表示的图的深度优先搜索 
void DFS(ALGraph G,int v)
{//图G为邻接表类型
  cout<<G.vertices[v].data;
  visited[v]=true;//访问第v个顶点,并置为true
  ArcNode *p;
  p=G.vertices[v].firstarc;//p指向v的边链表的第一个边结点
  while(p!=NULL)//边结点非空
  {
     int w=p->adjvex;      //表示w是v的邻接点
     if(!visited[w]) DFS(G,w);//如果w未访问,递归
     p=p->nextarc;//      p指向下一个边结点
   }
}

int main(){
	ALGraph G;
	CreateUGD(G);
	PrintfG(G);
	//初始化访问数组
	for(int i=0;i<MVNum;i++){
		visited[i]=false;
	} 
	
	DFS(G, 0);
} 

2.

#include<stdio.h>
#include<stack> 
#include <iostream>
#define MAXSIZE 100
#define MaxInt 32767 //表示最大值,即正无穷大 
#define MVNum 100 //定义最大顶点数 
using namespace std;

typedef char VerTexType;//假设顶点数据类型为字符型
typedef int ArcType;//假设边的权值为整型
typedef struct {
	VerTexType vexs[MVNum];//顶点表 
	ArcType arcs[MVNum][MVNum];//邻接矩阵
	int vexnum,arcnum;//图的当前顶点数和边数 
}AMGraph;

bool visited[MVNum]; //访问标志数组,初试为false 

//查找一个顶点在图G中的位置 
int LocateVex(AMGraph &G, VerTexType vex){
	for(int i=0;i<G.vexnum;i++){
		if(G.vexs[i]==vex){
			return i;
		}
	}
}

//采用邻接矩阵表示法创建无向网
/*
1.输入总订单数和总边数;
2.依次输入点的信息,存入顶点表;
3.初始化邻接矩阵,每个边的权值初始化为最大值;
4.构造邻接矩阵:依次输入每条边依附的顶点和边的权值,确定两个顶点在图中的位置,
之后使相应的边赋予相应的权值,同时使其相对称的边赋予同样的权值。 
*/
void CreateUDN(AMGraph &G){
	printf("请输入总顶点数:");
	scanf("%d",&G.vexnum);
	printf("请输入总边数:");
	scanf("%d", &G.arcnum);
	for(int i=0;i<G.vexnum;++i){
		printf("请输入第%d个顶点的信息:", (i+1));
		cin>>G.vexs[i];
	}
		
	printf("\n");
	//初始化邻接矩阵 
	for(int i=0;i<G.vexnum;i++){
		for(int j=0;j<G.vexnum;j++){
			G.arcs[i][j]=MaxInt;
		}
	}
	//构造邻接矩阵
	for(int k=0;k<G.arcnum;k++){
		printf("请输入第%d条边的信息(边的顶点和权值):\n", (k+1));
		printf("请输入边的第一个顶点:");
		VerTexType v1;
		//scanf("%c", &v1);
		cin>>v1; 
		printf("请输入边的第二个顶点:");
		VerTexType v2;
		//scanf("%c", &v2);
		cin>>v2;
		printf("请输入边的权重:");
		ArcType weight;
		scanf("%d", &weight);  
		//确定v1和v2在G中的位置,即顶点数组的下标
		int i=LocateVex(G, v1);
		printf("v1在图G中的位置:%d\n", i); 
		int j=LocateVex(G, v2);
		printf("v2在图G中的位置:%d\n", j); 
		G.arcs[i][j]=weight;
		G.arcs[j][i]=G.arcs[i][j];
	} 
} 

//输出图的邻接矩阵 
void PrintAM(AMGraph &G){
	printf("\n输出图的邻接矩阵:\n");
	for(int i=0;i<G.vexnum;i++){
		for(int j=0;j<G.vexnum;j++){
			if(G.arcs[i][j]==MaxInt){
				G.arcs[i][j]=0;
				printf("%d ", G.arcs[i][j]);
			}else{
				printf("%d ", G.arcs[i][j]);
			}
		}
		printf("\n");
	}
}

//采用邻接矩阵表示图的深度优先遍历 
void DFS_AM(AMGraph &G, int v){
	cout<<G.vexs[v];
	visited[v]=true;
	for(int w=0;w<G.vexnum;w++){
		if(G.arcs[v][w]!=0 && (!visited[w])){
			DFS_AM(G, w);
		}
	} 
} 

int main(){
	AMGraph G;
	CreateUDN(G);
	PrintAM(G);
	//初始化访问数组
	for(int i=0;i<MVNum; i++){
		visited[i]=false;
	} 
	DFS_AM(G, 0);
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值