图的深度优先搜索的过程:
(1)从图的某个顶点V出发,访问V.
(2)找出刚访问过的顶点的第一个未被访问的邻接点,访问该顶点。以该顶点为新顶点,重复此步骤,直到
刚顶点没有未bedi被访问的邻接点为止。
(3)返回前一个访问过的且仍有未被访问的邻接点的顶点,找出该din
顶点的下一个未被访问的邻接点,访问该顶点。
(4)重复步骤(2)和(3),直到图中所有的顶点都被访问过,搜索结束。
例如,上图的深度遍历过程如下:
(1)从a顶点出发,访问a。
(2)从a出发,访问第一个未被访问的邻接点b,访问b。以b作为新的起点,重复此步骤,访问e,c,d。
对于图的邻接表和邻接矩阵有不同的实现方式:
当图采用邻接表表示时:
//采用邻接表表示的图的深度优先搜索
void DFS(ALGraph G,int v)
{//图G为邻接表类型
cout<<G.vertices[v].data;
visited[v]=true;//访问第v个顶点,并置为true
ArcNode *p;
p=G.vertices[v].firstarc;//p指向v的边链表的第一个边结点
while(p!=NULL)//边结点非空
{
int w=p->adjvex; //表示w是v的邻接点
if(!visited[w]) DFS(G,w);//如果w未访问,递归
p=p->nextarc;// p指向下一个边结点
}
}
当图采用邻接矩阵表示时:
//采用邻接矩阵表示图的深度优先遍历
void DFS_AM(AMGraph &G, int v){
cout<<G.vexs[v];
visited[v]=true;
for(int w=0;w<G.vexnum;w++){
if(G.arcs[v][w]!=0 && (!visited[w])){
DFS_AM(G, w);
}
}
}
代码的具体实现如下:
1.
#include<stdio.h>
#include<stack>
#include <iostream>
#define MAXSIZE 100
#define MaxInt 32767 //表示最大值,即正无穷大
#define MVNum 100 //定义最大顶点数
using namespace std;
//========================使用邻接表法表示图============================
typedef char VerTexType; //定义顶点数据类型为字符型
typedef int ArcType; //定义边的权值类型为整型
//定义边结点
typedef struct ArcNode{
int adjvex; //该边所指向顶点的位置
struct ArcNode *nextarc; //指向下一条边的指针
}ArcNode;
//定义顶点结点信息
typedef struct VNode{
VerTexType data;
ArcNode *firstarc; //指向依附于该顶点的边的指针
}VNode, AdjList[MVNum];
//定义连接表结构
typedef struct{
AdjList vertices;
int vexnum, arcnum; //当前图的顶点数和边数
}ALGraph;
bool visited[MVNum]; //访问标志数组,初试为false
//==============================图的遍历和创建=================================
//确定顶点vex在G.vertices中的序号
int LocateVex(ALGraph &G, VerTexType vex){
for(int i=0;i<G.vexnum;i++){
if(G.vertices[i].data==vex){
return i;
}
}
}
//邻接表法创建无向图
void CreateUGD(ALGraph &G){
printf("输入总顶点数:");
cin>>G.vexnum;
printf("输入总边数:");
cin>>G.arcnum;
//输入各个顶点,构造邻接表的表头结点表
for(int i=0;i<G.vexnum;i++){
printf("请输入第%d个顶点的信息:", (i+1));
cin>>G.vertices[i].data;
G.vertices[i].firstarc=NULL;
}
//输入各边,构造邻接表
for(int k=0;k<G.arcnum;k++){
printf("请输入第%d条边的信息:\n", (k+1));
printf("请输入边依附的第1个顶点:");
VerTexType v1;
cin>>v1;
printf("请输入边依附的第2个顶点:");
VerTexType v2;
cin>>v2;
//确定v1,v2在图G中的位置,即在G.vertices中的序号
int i=LocateVex(G, v1);
int j=LocateVex(G, v2);
struct ArcNode *p1, *p2;
p1=new ArcNode; //生成一个新的边结点
p1->adjvex=j;
p1->nextarc=G.vertices[i].firstarc;
G.vertices[i].firstarc=p1;
p2=new ArcNode; //生成另一个对称边结点p2
p2->adjvex=i;
p2->nextarc=G.vertices[j].firstarc;
G.vertices[j].firstarc=p2;
}
}
//遍历图的邻接表
void PrintfG(ALGraph &G){
printf("遍历图的邻接表:\n");
for(int i=0;i<G.vexnum;i++){
printf("顶点%c ", G.vertices[i].data);
ArcNode *p;
p=G.vertices[i].firstarc;
while(p){
printf("%d ", p->adjvex);
p=p->nextarc;
}
}
printf("\n");
}
//采用邻接表表示的图的深度优先搜索
void DFS(ALGraph G,int v)
{//图G为邻接表类型
cout<<G.vertices[v].data;
visited[v]=true;//访问第v个顶点,并置为true
ArcNode *p;
p=G.vertices[v].firstarc;//p指向v的边链表的第一个边结点
while(p!=NULL)//边结点非空
{
int w=p->adjvex; //表示w是v的邻接点
if(!visited[w]) DFS(G,w);//如果w未访问,递归
p=p->nextarc;// p指向下一个边结点
}
}
int main(){
ALGraph G;
CreateUGD(G);
PrintfG(G);
//初始化访问数组
for(int i=0;i<MVNum;i++){
visited[i]=false;
}
DFS(G, 0);
}
2.
#include<stdio.h>
#include<stack>
#include <iostream>
#define MAXSIZE 100
#define MaxInt 32767 //表示最大值,即正无穷大
#define MVNum 100 //定义最大顶点数
using namespace std;
typedef char VerTexType;//假设顶点数据类型为字符型
typedef int ArcType;//假设边的权值为整型
typedef struct {
VerTexType vexs[MVNum];//顶点表
ArcType arcs[MVNum][MVNum];//邻接矩阵
int vexnum,arcnum;//图的当前顶点数和边数
}AMGraph;
bool visited[MVNum]; //访问标志数组,初试为false
//查找一个顶点在图G中的位置
int LocateVex(AMGraph &G, VerTexType vex){
for(int i=0;i<G.vexnum;i++){
if(G.vexs[i]==vex){
return i;
}
}
}
//采用邻接矩阵表示法创建无向网
/*
1.输入总订单数和总边数;
2.依次输入点的信息,存入顶点表;
3.初始化邻接矩阵,每个边的权值初始化为最大值;
4.构造邻接矩阵:依次输入每条边依附的顶点和边的权值,确定两个顶点在图中的位置,
之后使相应的边赋予相应的权值,同时使其相对称的边赋予同样的权值。
*/
void CreateUDN(AMGraph &G){
printf("请输入总顶点数:");
scanf("%d",&G.vexnum);
printf("请输入总边数:");
scanf("%d", &G.arcnum);
for(int i=0;i<G.vexnum;++i){
printf("请输入第%d个顶点的信息:", (i+1));
cin>>G.vexs[i];
}
printf("\n");
//初始化邻接矩阵
for(int i=0;i<G.vexnum;i++){
for(int j=0;j<G.vexnum;j++){
G.arcs[i][j]=MaxInt;
}
}
//构造邻接矩阵
for(int k=0;k<G.arcnum;k++){
printf("请输入第%d条边的信息(边的顶点和权值):\n", (k+1));
printf("请输入边的第一个顶点:");
VerTexType v1;
//scanf("%c", &v1);
cin>>v1;
printf("请输入边的第二个顶点:");
VerTexType v2;
//scanf("%c", &v2);
cin>>v2;
printf("请输入边的权重:");
ArcType weight;
scanf("%d", &weight);
//确定v1和v2在G中的位置,即顶点数组的下标
int i=LocateVex(G, v1);
printf("v1在图G中的位置:%d\n", i);
int j=LocateVex(G, v2);
printf("v2在图G中的位置:%d\n", j);
G.arcs[i][j]=weight;
G.arcs[j][i]=G.arcs[i][j];
}
}
//输出图的邻接矩阵
void PrintAM(AMGraph &G){
printf("\n输出图的邻接矩阵:\n");
for(int i=0;i<G.vexnum;i++){
for(int j=0;j<G.vexnum;j++){
if(G.arcs[i][j]==MaxInt){
G.arcs[i][j]=0;
printf("%d ", G.arcs[i][j]);
}else{
printf("%d ", G.arcs[i][j]);
}
}
printf("\n");
}
}
//采用邻接矩阵表示图的深度优先遍历
void DFS_AM(AMGraph &G, int v){
cout<<G.vexs[v];
visited[v]=true;
for(int w=0;w<G.vexnum;w++){
if(G.arcs[v][w]!=0 && (!visited[w])){
DFS_AM(G, w);
}
}
}
int main(){
AMGraph G;
CreateUDN(G);
PrintAM(G);
//初始化访问数组
for(int i=0;i<MVNum; i++){
visited[i]=false;
}
DFS_AM(G, 0);
}