图的深度优先遍历类似于二叉树的先序遍历,从上到下,从左到右,涉及到回溯问题。
DFS遍历连通图
【算法步骤】
1.从图中某个顶点v出发,访问v,并置标志数组visited[v]的值为1。
2.依次检查v的所有邻接点w,如果visited[w]的值为0,再从w出发进行递归遍历,直到图中所有结点都被访问过。
//深度优先搜索DFS遍历连通图
void DFS(Graph G, int v)//以位置v为始点遍历图G
{
cout << G.vexs[v] <<" ";
visited[v]=1;//访问过第v个结点标记为1
for(int w=FirstAdjVex(G,v);w>=0;w=NextAdjVex(G,v,w))
{
if (!visited[w])//对未访问的第w个结点进行访问
DFS(G,w);
}
}
DFS遍历非连通图
【算法分析】
若是非连通图,上述遍历执行后,图中一定还有结点未被访问,需要从图中另选一个未被访问的结点作为起始点,重复上述DFS遍历过程,直到图中所有顶点均被访问为止。
//深度优先搜索DFS遍历非连通图
void DFSTraverse(Graph G)
{
for (int i = 0; i < G.vexnum; i++)
visited[i] =0;//对标志数组初始化
for (int i = 0; i < G.vexnum; i++)
if(!visited[i])
DFS(G,i);//对未访问的结点调用DFS
}
完整代码如下:
#include<bits/stdc++.h>
using namespace std;
const int Max=100;
//图的邻接矩阵
typedef struct {
string vexs[Max];//顶点表
int arcs[Max][Max];//邻接矩阵
int vexnum, arcnum;//图的顶点数和边数
}Graph;
//确定顶点v在图G中的位置
int LocateVex(Graph G,string v)
{
for (int i = 0; i < G.vexnum; i++)
if(G.vexs[i] == v)
return i;
return -1;//未找到指定结点
}
//返回结点v的第一个邻接点编号
int FirstAdjVex(Graph G, int v)
{
for (int j = 0; j < G.vexnum; j++)
if (G.arcs[v][j] == 1)
//邻接表该处为1,表明形参结点和j号结点之间有边
return j;
return -1;//未找到任何结点与v相连
}
//返回结点v相对于w的下个邻接点
int NextAdjVex(Graph& G, int v, int w) {
for (int i = w + 1; i < G.vexnum; i++) {
if (G.arcs[v][i] == 1)
return i;
}
return -1;//未找到任何结点
}
//采用邻接矩阵法创建无向图
int CreateUDG(Graph &G) {
printf("请输入结点数和边数:");
cin >> G.vexnum >> G.arcnum;//输入结点数和边数
printf("请输入各结点:");
for(int i = 0;i < G.vexnum;i++)//输入各结点
cin >> G.vexs[i];
for(int i = 0; i < G.vexnum; i++)
for(int j = 0; j < G.vexnum; j++)
G.arcs[i][j] = 0;//将邻接矩阵边都初始化为0
printf("请输入所有有边的两两结点:\n");
for(int k = 0;k < G.arcnum;k++)
{
string v1,v2;
cin >>v1>>v2;//输入有边的两个结点
int i = LocateVex(G,v1);
int j = LocateVex(G,v2);//找到两个结点的位置
G.arcs[i][j] = G.arcs[j][i] = 1;
}
return 1;
}
int visited[Max];//标志数组
//深度优先搜索DFS遍历连通图
void DFS(Graph G, int v)//以位置v为始点遍历图G
{
cout << G.vexs[v] <<" ";
visited[v]=1;//访问过第v个结点标记为1
for(int w=FirstAdjVex(G,v);w>=0;w=NextAdjVex(G,v,w))
{
if (!visited[w])//对未访问的第w个结点进行访问
DFS(G,w);
}
}
//深度优先搜索DFS遍历非连通图
void DFSTraverse(Graph G)
{
for (int i = 0; i < G.vexnum; i++)
visited[i] =0;//对标志数组初始化
for (int i = 0; i < G.vexnum; i++)
if(!visited[i])
DFS(G,i);//对未访问的结点调用DFS
}
//主函数
int main()
{
Graph G;
CreateUDG(G);
int v=0;
DFS(G,v);
return 0;
}
简单的测试样例:
/*样例输入:
7 7
v1 v2 v3 v4 v5 v6 v7
v1 v2
v1 v3
v2 v4
v2 v5
v3 v6
v3 v7
v6 v7
结果输出:
v1 v2 v4 v5 v3 v6 v7
*/