深度优先搜索DFS递归实现图的遍历

 图的深度优先遍历类似于二叉树的先序遍历,从上到下,从左到右,涉及到回溯问题。

  DFS遍历连通图

算法步骤

      1.从图中某个顶点v出发,访问v,并置标志数组visited[v]的值为1。

        2.依次检查v的所有邻接点w,如果visited[w]的值为0,再从w出发进行递归遍历,直到图中所有结点都被访问过。

//深度优先搜索DFS遍历连通图
void DFS(Graph G, int v)//以位置v为始点遍历图G 
{
	cout << G.vexs[v] <<" "; 
	visited[v]=1;//访问过第v个结点标记为1 
	for(int w=FirstAdjVex(G,v);w>=0;w=NextAdjVex(G,v,w)) 
	{
		if (!visited[w])//对未访问的第w个结点进行访问 
			DFS(G,w);
	}
}

DFS遍历非连通图

算法分析

若是非连通图,上述遍历执行后,图中一定还有结点未被访问,需要从图中另选一个未被访问的结点作为起始点,重复上述DFS遍历过程,直到图中所有顶点均被访问为止。

//深度优先搜索DFS遍历非连通图
void DFSTraverse(Graph G) 
{
	for (int i = 0; i < G.vexnum; i++)
		visited[i] =0;//对标志数组初始化
	for (int i = 0; i < G.vexnum; i++)
		if(!visited[i]) 
			DFS(G,i);//对未访问的结点调用DFS
}

完整代码如下: 

#include<bits/stdc++.h> 
using namespace std;
const int Max=100;
//图的邻接矩阵
typedef struct {
	string vexs[Max];//顶点表
	int arcs[Max][Max];//邻接矩阵
	int vexnum, arcnum;//图的顶点数和边数
}Graph;
//确定顶点v在图G中的位置
int LocateVex(Graph G,string v) 
{
	for (int i = 0; i < G.vexnum; i++)
		if(G.vexs[i] == v)
			return i;
	return -1;//未找到指定结点
}
//返回结点v的第一个邻接点编号
int FirstAdjVex(Graph G, int v) 
{
	for (int j = 0; j < G.vexnum; j++)
		if (G.arcs[v][j] == 1)
		//邻接表该处为1,表明形参结点和j号结点之间有边
			return j;
	return -1;//未找到任何结点与v相连 
}
//返回结点v相对于w的下个邻接点
int NextAdjVex(Graph& G, int v, int w) {
	for (int i = w + 1; i < G.vexnum; i++) {
		if (G.arcs[v][i] == 1)
			return i;
	}
	return -1;//未找到任何结点 
}
//采用邻接矩阵法创建无向图
int CreateUDG(Graph &G) {
	printf("请输入结点数和边数:");
	cin >> G.vexnum >> G.arcnum;//输入结点数和边数
	printf("请输入各结点:"); 
	for(int i = 0;i < G.vexnum;i++)//输入各结点
		cin >> G.vexs[i];
	for(int i = 0; i < G.vexnum; i++)
		for(int j = 0; j < G.vexnum; j++)
			G.arcs[i][j] = 0;//将邻接矩阵边都初始化为0
	printf("请输入所有有边的两两结点:\n");
	for(int k = 0;k < G.arcnum;k++) 
	{
		string v1,v2;
		cin >>v1>>v2;//输入有边的两个结点
		int i = LocateVex(G,v1);
		int j = LocateVex(G,v2);//找到两个结点的位置
		G.arcs[i][j] = G.arcs[j][i] = 1;
	}
	return 1;
}
int visited[Max];//标志数组
//深度优先搜索DFS遍历连通图
void DFS(Graph G, int v)//以位置v为始点遍历图G 
{
	cout << G.vexs[v] <<" "; 
	visited[v]=1;//访问过第v个结点标记为1 
	for(int w=FirstAdjVex(G,v);w>=0;w=NextAdjVex(G,v,w)) 
	{
		if (!visited[w])//对未访问的第w个结点进行访问 
			DFS(G,w);
	}
}
//深度优先搜索DFS遍历非连通图
void DFSTraverse(Graph G) 
{
	for (int i = 0; i < G.vexnum; i++)
		visited[i] =0;//对标志数组初始化
	for (int i = 0; i < G.vexnum; i++)
		if(!visited[i]) 
			DFS(G,i);//对未访问的结点调用DFS
}
//主函数 
int main()
{
	Graph G;
	CreateUDG(G);
	int v=0;
	DFS(G,v);
	return 0;
}

简单的测试样例:

/*样例输入: 
7 7
v1 v2 v3 v4 v5 v6 v7
v1 v2
v1 v3
v2 v4
v2 v5
v3 v6
v3 v7
v6 v7
结果输出:
v1 v2 v4 v5 v3 v6 v7 
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值