给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
示例 1:
输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。
示例 2:输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。提示:
1 <= nums.length <= 200
1 <= nums[i] <= 100
思想来自:https://leetcode.cn/problems/partition-equal-subset-sum/solution/fen-ge-deng-he-zi-ji-by-leetcode-solution/
这道题可以换一种表述:给定一个只包含正整数的非空数组 n u m s [ 0 ] nums[0] nums[0],判断是否可以从数组中选出一些数字,使得这些数字的和等于整个数组的元素和的一半。因此这个问题可以转换成「0-1 背包问题」。这道题与传统的「0-1 背包问题」的区别在于,传统的「0-1 背包问题」要求选取的物品的重量之和不能超过背包的总容量,这道题则要求选取的数字的和恰好等于整个数组的元素和的一半。类似于传统的「0-1 背包问题」,可以使用动态规划求解。
在使用动态规划求解之前,首先需要进行以下判断。
-
根据数组的长度 n 判断数组是否可以被划分。如果 n<2,则不可能将数组分割成元素和相等的两个子集,因此直接返回 false。
-
计算整个数组的元素和 sum 以及最大元素 maxNum。如果 sum 是奇数,则不可能将数组分割成元素和相等的两个子集,因此直接返回 false。如果sum 是偶数,则令 t a r g e t = s u m / 2 target = sum/2 target=sum/2 ,需要判断是否可以从数组中选出一些数字,使得这些数字的和等于 target。如果 maxNum >target,则除了 maxNum 以外的所有元素之和一定小于 target,因此不可能将数组分割成元素和相等的两个子集,直接返回 false。
创建二维数组 dp,包含 n 行 target+1 列,其中 d p [ i ] [ j ] dp[i][j] dp[i][j] 表示从数组的 [ 0 , i ] [0,i] [0,i] 下标范围内选取若干个正整数(可以是 0 个),是否存在一种选取方案使得被选取的正整数的和等于 j。初始时,dp 中的全部元素都是 false。
在定义状态之后,需要考虑边界情况。以下两种情况都属于边界情况。
- 如果不选取任何正整数,则被选取的正整数等于 0。因此对于所有 0 ≤ i < n 0 \le i < n 0≤i<n,都有 d p [ i ] [ 0 ] = t r u e dp[i][0]=true dp[i][0]=true。
- 当 i==0 时,只有一个正整数 n u m s [ 0 ] nums[0] nums[0] 可以被选取,因此 d p [ 0 ] [ n u m s [ 0 ] ] = t r u e dp[0][nums[0]]=true dp[0][nums[0]]=true
状态转移方程如下:
class Solution:
def canPartition(self, nums: list) -> bool:
sum_num = sum(nums)
max_num = max(nums)
if sum_num % 2 != 0:
return False
target = sum_num // 2
if max_num > target:
return False
dp = [[True] + [False] * target for _ in range(len(nums))]
dp[0][nums[0]] = True
for i in range(1, len(nums)):
for j in range(1, (target+1)):
if j >= nums[i]:
dp[i][j] = dp[i-1][j] | dp[i-1][j-nums[i]]
else:
dp[i][j] = dp[i-1][j]
return dp[len(nums) - 1][target]
if __name__ == '__main__':
s = Solution()
print(s.canPartition([1,5,11,5]))
print(s.canPartition([1,2,3,5]))
时间复杂度和空间复杂度都是 O ( n × t a r g e t ) O(n×target) O(n×target)