数据倾斜,通俗地说就是某台机器(Instance)被分发到了明显大于其他机器的数据量,导致这台机器的处理量巨大,成为整个查询语句运行的“时间瓶颈”。
在 HQL 运行后可通过查看日志,观察每个 task 的运行时间或 I/O Bytes(ODPS 的伏羲任务平台也会有Long tails 直接标记出哪些 task 是长尾任务,长尾意味着运行时间长发生数据倾斜了)。对应上面的任务类型,数据倾斜也分 3种:Map 数据倾斜、Reduce 数据倾斜、Join 数据倾斜。
一.Map 数据倾斜
Map 端读数据时,由于读入数据文件大小分布不均匀,因此导致有些 Map Instance 读取并且处理的数据特别多,而有些 Map Instance 处理的数据特别少,造成 Map 端长尾。
优化思路有以下 2 种:
1)缩小读入数据量
- 做好行裁剪:务必确保好分区裁剪生效,并通过 where 子句过滤不需要的数据;
- 做好列裁剪:能不用 select * 就一定不要用;
- 有中间层可用就用中间层,如果没有则看是否能分段跑。比如要取3个月的数据,则可以分别写三段sql,每段取一个月的数据。
--- 仅读取财年内日期
select user_id
from user_label
where ds >= bi_udf:bi_get_date(bi_udf:bi_fiscal_year('${bizdate}'), -1) --- 这是取阿里财年的 UDF 函数
and ds < bi_udf:bi_get_date(bi_udf:bi_fiscal_year('${bizdate}'), 1)
group by user_id;
--- 暴力扫描 500+分区
select user_id
from eleme_cdm.dws_ele_mbr_level_label
where ds >=(
case
when month(to_date('${bizdate}', 'yyyymmdd')) >=4 then concat(year(to_date('${bizdate}', 'yyyymmdd')), '04', '01')
when month(to_date('${bizdate}', 'yyyymmdd')) <4 then concat(year(to_date('${bizdate}', 'yyyymmdd'))-1, '04', '01')
end)
group by user_id;
2)合理使用参数控制上游小文件的合并
set odps.sql.mapper.merge.limit.size=64; --- 设定小文件合并的最大阈值,单位:M
set odps.sql.mapper.split.size=256; --- 设定一个 Map 的最大数据输入量,单位:M
需要注意的是后者参数 set odps.sql.mapper.split.size=256; 需谨慎设置,设置过小会消耗过多机器资源,且可能出现 Map Instance 个数超过系统设置的情况。当需要的Map Instance个数太多,超过99999个Instance个数的限制。
二、Join 数据倾斜
Join 执行阶段会将 Join Key 相同的数据分发到同一个执行 Instance 上处理 。
如果某个Key 上的数据量比较大,则是发生数据倾斜,会导致该 Instance 执行时间较长。比如,电商大促场景下,某些大型店铺的 PV 会远远超过一般店铺,当用 PV表关联没店铺维度表时,会按照店铺 ID 纪念性分发,导致某些大卖家所在的 Instance 处理的数据量远远超过其他 Instance。,而整个任务会因为这个长尾 Instance 迟迟无法结束。
对应不同场景优化访问不同,
1)当大小表关联且小表是从表时,使用 map join
map join 可将小表放入内存中,避免长尾的分发。所谓从表,即LEFT OUTER JOIN中的右表,或者RIGHT OUTER JOIN中的左表。
select /* mapjoin(b) */
a.c2, b.c3
from (select c1, c2 from t1) a
left outer join (select c1, c3 from t2 ) b on a.c1 = b.c1; --- b表为小表
2)Join 的 2个表都是大表,且由于空值导致长尾,可将空值处理成随机值
select col_a, col_b
from table_a
left join table_b on coalesce(table_a.key, rand()*9999) = table_b.key
3)Join 的 2个表都是大表,且由于热点值导致长尾,可以先将热点Key取出,对于主表数据用热点Key切分成热点数据和非热点数据两部分分别处理,最后合并。比如下述示例
- 取出热点Key:将PV大于50000的商品ID取出到临时表
insert overwrite table topk_item PARTITION (ds = '${bizdate}')
select item_id
from(
select item_id, count(1) as cnt
from dwd_tb_log_pv_di
where ds = '${bizdate}'
and url_type = 'ipv'
and item_id is not null
group by item_id
) a
where cnt >= 50000;
2. 取出非热点数据:将主表(sdwd_tb_log_pv_di)和热点key表(topk_item)外关联后通过条件b1.item_id is null,取出关联不到的数据即非热点商品的日志数据,此时需要用MAP JOIN。再用非热点数据关联商品维表,因为已经排除了热点数据,不会存在长尾。
4)设置 odps.sql.skewjoin 参数解决长尾
set odps.sql.skewjoin=true; --- 开启功能
set odps.sql.skewinfo=skewed_src:(skewed_key) [("skewed_value")]; --- 倾斜值较多,或会动态变化则不适合这样设置
三、Reduce 数据倾斜
Reduce 端负责的是将Map 端梳理后的有序 Key-value 键值对进行聚合,即进行count、sum、Avg 等聚合操作,得到最终聚合的结果。
什么样的场景会发生数据倾斜?聚合计算依赖的 key 分布不均匀时就会发生数据倾斜。比如,按店铺汇总订单量时,某一商户的订单量占到60%,则就可能发生长尾。
优化方法有,
1)用两次 group by 代替 count distinct
第一次 group by 用来去重数据记录达到缩小数据量的目的,第二次 group by 进行 count 聚合。
2)合理使用参数,开启二次分发
set odps.sql.groupby.skewindata=true; --- 长尾Instance,会二次分发规避长尾
3)不同指标的 count distinct 放到多段 SQL 中执行,执行后再 UNION 或 JOIN 合并
多个 Distinct 同时出现在 SQL 代码中时(如对 uid、order_id、shop_id等均需去重技术时),数据会被分发多次,导致节点效率低。
四、优化
- 增加机器资源时,优先 instance 个数:在没有出现数据倾斜的情况下,如果通过设置Cpu参数(含Memory参数)和设置Instance个数两种方式都能调优的话,最好是先设置Instance个数。因为如果Cpu/Memory参数设置不合理,执行任务的机器满足不了参数的要求,要重新找机器的,这样反而会影响效率。
- 执行日志中出现Dump,最好是Instance个数/Memory都增大一下:如何选择合适的参数个数?用二分法寻找最合适instance 个数,如果一个instance处理的数据量降到了1亿以下,或者instance的执行时间小于15-20Min,那么就说明当前的资源设置已经比较恰当了。
- 默认的Reduce instance一般是Map instance 的三分之一,一般Join instance个数一般是Reduce instance的个数之和