算法基础4.3高斯消元,求组合数

高斯消元

例题:高斯消元解线性方程组

#include <iostream>
#include <algorithm>
#include <cmath>

using namespace std;

const int N = 110;
const double eps = 1e-6;

int n;
double a[N][N];


int gauss()
{
    int c, r;// c 代表 列 col , r 代表 行 row
    for (c = 0, r = 0; c < n; c ++ )
    {
        int t = r;// 先找到当前这一列,绝对值最大的一个数字所在的行号
        for (int i = r; i < n; i ++ )
            if (fabs(a[i][c]) > fabs(a[t][c]))
                t = i;

        if (fabs(a[t][c]) < eps) continue;// 如果当前这一列的最大数都是 0 ,那么所有数都是 0,就没必要去算了,因为它的约束方程,可能在上面几行

        for (int i = c; i < n + 1; i ++ ) swap(a[t][i], a[r][i]); 把当前这一行,换到最上面(不是第一行,是第 r 行)去
        for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c];// 把当前这一行的第一个数,变成 1, 方程两边同时除以 第一个数,必须要到着算,不然第一个数直接变1,系数就被篡改,后面的数字没法算
        for (int i = r + 1; i < n; i ++ )// 把当前列下面的所有数,全部消成 0
            if (fabs(a[i][c]) > eps)// 如果非0 再操作,已经是 0就没必要操作了
                for (int j = n; j >= c; j -- )// 从后往前,当前行的每个数字,都减去对应列 * 行首非0的数字,这样就能保证第一个数字是 a[i][0] -= 1*a[i][0];
                    a[i][j] -= a[r][j] * a[i][c];

        r ++ ;// 这一行的工作做完,换下一行
    }

    if (r < n)// 说明剩下方程的个数是小于 n 的,说明不是唯一解,判断是无解还是无穷多解
    {// 因为已经是阶梯型,所以 r ~ n-1 的值应该都为 0
        for (int i = r; i < n; i ++ )// 
            if (fabs(a[i][n]) > eps)// a[i][n] 代表 b_i ,即 左边=0,右边=b_i,0 != b_i, 所以无解。
                return 2;
        return 1;// 否则, 0 = 0,就是r ~ n-1的方程都是多余方程
    }
    // 唯一解 ↓,从下往上回代,得到方程的解
    for (int i = n - 1; i >= 0; i -- )
        for (int j = i + 1; j < n; j ++ )
            a[i][n] -= a[j][n] * a[i][j];//因为只要得到解,所以只用对 b_i 进行操作,中间的值,可以不用操作,因为不用输出

    return 0;
}

int main()
{
    cin >> n;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n + 1; j ++ )
            cin >> a[i][j];

    int t = gauss();

    if (t == 0)
    {
        for (int i = 0; i < n; i ++ ) printf("%.2lf\n", a[i][n]);
    }
    else if (t == 1) puts("Infinite group solutions");
    else puts("No solution");

    return 0;
}

例题:高斯消元解异或线性方程组

/*
核心思想: 异或-不进位的加法
那么等式与等式间的异或要一起进行才能保证等式左右两边依然是相等关系!
 a^b^c = x
   d^f = y
   则
 a^b^d^c^f = x^y
1 左下角消0
  1.1 枚举列
  1.2 找第一个非零行
  1.3 交换
  1.4 把同列下面行消零(异或)
2 判断3种情况
  2.1 唯一解
  2.2 秩<n
      2.2.1 有矛盾 无解
      2.2.2 无矛盾 无穷多解

// 左下角消
for(int i=r+1;i<n;i++)
    if(a[i][c])//漏了
        for(int j=n;j>=c;j--)//漏了
            a[i][j] ^= a[r][j];

for(int i=r;i<n;i++)
    if(a[i][c])
        t= i;//写成t=r

for(int i=n-1;i>=0;i--)
    for(int j=i+1;j<n;j++)//写成j=r+1
*/

————————————————————————

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 110;

int n;
int a[N][N];
int gauss()
{
    int c,r;
    for(c=0,r=0;c<n;c++)
    {
        // 找主元
        int t=-1;
        for(int i=r;i<n;i++)
            if(a[i][c])
            {
                t=i;
                break;
            }
        if(t==-1) continue;
        // 交换主元行
        for(int j=c;j<=n;j++) swap(a[r][j],a[t][j]);
        // 左下角消
        for(int i=r+1;i<n;i++)
            if(a[i][c])//漏了
                for(int j=n;j>=c;j--)//漏了
                    a[i][j] ^= a[r][j];
        r++;
    }
    // 判断
    if(r<n)
    {
        for(int i=r;i<n;i++)//i=r
            if(a[i][n])
                return 2;
        return 1;
    }
    // 消右上角
    for(int i=n-1;i>=0;i--)
        for(int j=i+1;j<n;j++)
        //如果是0 就不用下面的a[j][j] 来^a[i][j]了
        //如果不是0 才需要用第j行第j列a[j][j]来^第i行第j列a[i][j] 
        //进而进行整行row[i]^row[j] 间接导致 a[i][n]^a[j][n]
            if(a[i][j])
                a[i][n]^=a[j][n];
    return 0;
}

int main()
{
    cin >> n;
    for(int i=0;i<n;i++)
        for(int j=0;j<=n;j++)
            cin >> a[i][j];
    int t = gauss();
    if(t==0)
    {
        for(int i=0;i<n;i++) cout << a[i][n] << endl;
    }
    else if(t==1) puts("Multiple sets of solutions");
    else puts("No solution");
    return 0;
}

——————————————————————————————————————-

求组合数

例题:求组合数 I

公式求组合数   O(n2)

#include<iostream>
using namespace std;
const int mod = 1e9+7;
long long f[2010][2010];
int main()
{
    //预处理
    for(int i=0;i<=2000;i++)
    {
        for(int j=0;j<=i;j++)
        {
            if(!j) f[i][j]=1;
            else f[i][j]=(f[i-1][j-1]+f[i-1][j])%mod;
        }
    }
    int n;
    cin>>n;
    while(n--)
    {
        int a,b;
        cin>>a>>b;
        printf("%ld\n",f[a][b]);
    }
}

作者:码
链接:https://www.acwing.com/solution/content/21902/
来源:AcWing

例题:求组合数 II

快速幂求组合数 O(a∗log(mod))
#include<iostream>
using namespace std;
const int mod=1e9+7,N=1e5+10;
typedef long long LL;
long long fac[N],infac[N];
int quick_pow(int a, int k, int p)
{
    int res = 1;
    while (k)
    {
        if (k & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    return res;
}
int main()
{
    int n;
    fac[0]=infac[0]=1;
    for(int i=1;i<=1e5;i++)
    {
        fac[i]=fac[i-1]*i%mod;
        infac[i]=(LL)infac[i - 1] * quick_pow(i,mod-2,mod)%mod;
    }
    cin>>n;
    while(n--)
    {
        int a,b;
        cin>>a>>b;
        cout<<(LL)fac[a] * infac[b] % mod * infac[a - b] % mod<<endl;
    }
}

作者:码
链接:https://www.acwing.com/solution/content/22076/
来源:AcWing

例题:求组合数 III

#include<iostream>
#include<algorithm>

using namespace std;

typedef long long LL;

int qmi(int a,int k,int p)
{
    int res = 1;
    while(k)
    {
        if(k&1)res = (LL)res*a%p;
        a = (LL)a*a%p;
        k>>=1;
    }
    return res;
}

int C(int a,int b,int p)//自变量类型int
{
    if(b>a)return 0;//漏了边界条件
    int res = 1;
    // a!/(b!(a-b)!) = (a-b+1)*...*a / b! 分子有b项
    for(int i=1,j=a;i<=b;i++,j--)//i<=b而不是<
    {
        res = (LL)res*j%p;
        res = (LL)res*qmi(i,p-2,p)%p;
    }
    return res;
}
//对公式敲
int lucas(LL a,LL b,int p)
{
    if(a<p && b<p)return C(a,b,p);//lucas递归终点是C_{bk}^{ak}
    return (LL)C(a%p,b%p,p)*lucas(a/p,b/p,p)%p;//a%p后肯定是<p的,所以可以用C(),但a/p后不一定<p 所以用lucas继续递归
}

int main()
{
    int n;
    cin >> n;
    while(n--)
    {
        LL a,b;
        int p;
        cin >> a >> b >> p;
        cout << lucas(a,b,p) << endl;
    }
    return 0;
}

例题:求组合数 IV


具体:

筛素数(1~5000)
求每个质数的次数
用高精度乘把所有质因子乘上

#include<iostream>
#include<algorithm>
#include<vector>

using namespace std;

const int N=5010;

int primes[N],cnt;
int sum[N];
bool st[N];

void get_primes(int n)
{
    for(int i=2;i<=n;i++)
    {
        if(!st[i])primes[cnt++]=i;
        for(int j=0;primes[j]*i<=n;j++)
        {
            st[primes[j]*i]=true;
            if(i%primes[j]==0)break;//==0每次漏
        }
    }
}
// 对p的各个<=a的次数算整除下取整倍数
int get(int n,int p)
{
    int res =0;
    while(n)
    {
        res+=n/p;
        n/=p;
    }
    return res;
}
//高精度乘
vector<int> mul(vector<int> a, int b)
{
    vector<int> c;
    int t = 0;
    for (int i = 0; i < a.size(); i ++ )
    {
        t += a[i] * b;
        c.push_back(t % 10);
        t /= 10;
    }
    while (t)
    {
        c.push_back(t % 10);
        t /= 10;
    }
    // while(C.size()>1 && C.back()==0) C.pop_back();//考虑b==0时才有pop多余的0 b!=0不需要这行
    return c;
}

int main()
{
    int a,b;
    cin >> a >> b;
    get_primes(a);

    for(int i=0;i<cnt;i++)
    {
        int p = primes[i];
        sum[i] = get(a,p)-get(a-b,p)-get(b,p);//是a-b不是b-a
    }

    vector<int> res;
    res.push_back(1);

    for (int i = 0; i < cnt; i ++ )
        for (int j = 0; j < sum[i]; j ++ )//primes[i]的次数
            res = mul(res, primes[i]);

    for (int i = res.size() - 1; i >= 0; i -- ) printf("%d", res[i]);
    puts("");

    return 0;
}

作者:仅存老实人
链接:https://www.acwing.com/solution/content/26559/
来源:AcWing

例题:满足条件的01序列

end——————————————————————————————————————————

  • 24
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值