算法基础3.3最小生成树:普利姆算法(朴素和堆优化版Prim),克鲁斯卡尔算法(Kruskal),二分图(染色法,匈牙利算法)

最小生成树由于没有环,正边和负边都可以实现,Prim与Dijkstra算法实现的方法差不多,堆优化版的与克鲁斯卡尔算法有竞争关系,因为克鲁斯卡尔算法思路更简单且代码实现方便被较多使用,稠密图用朴素的Prim,稀疏图用Kruskal算法。

一定秉承实用主义。

朴素的Prim

例题:Prim算法求最小生成树   

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

给定一张边带权的无向图 G=(V,E),其中 V表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式

第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v之间存在一条权值为 w 的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

数据范围

1≤n≤500,
1≤m≤10的5次方,
图中涉及边的边权的绝对值均不超过 10000。

输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6

时间复杂度是 O(n2+m), n表示点数,m表示边数
int n;      // n表示点数
int g[N][N];        // 邻接矩阵,存储所有边
int dist[N];        // 存储其他点到当前最小生成树的距离
bool st[N];     // 存储每个点是否已经在生成树中


// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
int prim()
{
    memset(dist, 0x3f, sizeof dist);

    int res = 0;
    for (int i = 0; i < n; i ++ )
    {
        int t = -1;
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;

        if (i && dist[t] == INF) return INF;

        if (i) res += dist[t];
        st[t] = true;

        for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
    }

    return res;
}


作者:yxc
链接:https://www.acwing.com/blog/content/405/
来源:AcWing

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 510;
int g[N][N];//存储图
int dt[N];//存储各个节点到生成树的距离
int st[N];//节点是否被加入到生成树中
int pre[N];//节点的前去节点
int n, m;//n 个节点,m 条边

void prim()
{
    memset(dt,0x3f, sizeof(dt));//初始化距离数组为一个很大的数(10亿左右)
    int res= 0;//存的是最小生成树里面所有的长度之和
    dt[1] = 0;//从 1 号节点开始生成 
    for(int i = 0; i < n; i++)//每次循环选出一个点加入到生成树
    {
        int t = -1;
        for(int j = 1; j <= n; j++)//每个节点一次判断
        {
            if(!st[j] && (t == -1 || dt[j] < dt[t]))//如果没有在树中,且到树的距离最短,则选择该点
                t = j;   //t存的就是当前最小的点
        }

        //测试用例加强后,需要判断孤立点了
        //如果孤立点,直返输出不能,然后退出
        if(dt[t] == 0x3f3f3f3f) {  //最近的都是正无穷,图是不连通的
            cout << "impossible";
            return;
        }


        st[t] = 1;// 选择该点
        res += dt[t];  //先累加再更新,可能有字环
        for(int i = 1; i <= n; i++)//更新生成树外的点到生成树的距离
        {
            if(dt[i] > g[t][i] && !st[i])//从 t 到节点 i 的距离小于原来距离,则更新。
            {
                dt[i] = g[t][i];//更新距离
                pre[i] = t;//从 t 到 i 的距离更短,i 的前驱变为 t.
            }
        }
    }

    cout << res;

}

void getPath()//输出各个边
{
    for(int i = n; i > 1; i--)//n 个节点,所以有 n-1 条边。

    {
        cout << i <<" " << pre[i] << " "<< endl;// i 是节点编号,pre[i] 是 i 节点的前驱节点。他们构成一条边。
    }
}

int main()
{
    memset(g, 0x3f, sizeof(g));//各个点之间的距离初始化成很大的数
    cin >> n >> m;//输入节点数和边数
    while(m --)
    {
        int a, b, w;
        cin >> a >> b >> w;//输出边的两个顶点和权重
        g[a][b] = g[b][a] = min(g[a][b],w);//存储权重,对每一条无向边建一条从A向B的,再来一条从B到A的,可能会有重边,取最小的
    }

    prim();//求最小生成树
    //getPath();//输出路径
    return 0;
}

作者:Hasity
链接:https://www.acwing.com/solution/content/38312/
来源:AcWing

克鲁斯卡尔算法


 

例题: Kruskal算法求最小生成树

给定一个 n 个点 m条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。

由 V中的全部 n 个顶点和 E中 n−1条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式

第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

数据范围

1≤n≤10的5次方,
1≤m≤2∗10的5次方
图中涉及边的边权的绝对值均不超过 1000。

输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6

小模板:

时间复杂度是 O(mlogm), n表示点数,m表示边数
int n, m;       // n是点数,m是边数
int p[N];       // 并查集的父节点数组

struct Edge     // 存储边
{
    int a, b, w;

    bool operator< (const Edge &W)const
    {
        return w < W.w;
    }
}edges[M];

int find(int x)     // 并查集核心操作
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int kruskal()
{
    sort(edges, edges + m);

    for (int i = 1; i <= n; i ++ ) p[i] = i;    // 初始化并查集

    int res = 0, cnt = 0;
    for (int i = 0; i < m; i ++ )
    {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;

        a = find(a), b = find(b);
        if (a != b)     // 如果两个连通块不连通,则将这两个连通块合并
        {
            p[a] = b;
            res += w;
            cnt ++ ;
        }
    }

    if (cnt < n - 1) return INF;
    return res;
}

作者:yxc
链接:https://www.acwing.com/blog/content/405/
来源:AcWing

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 100010;
int p[N];//保存并查集

struct E{
    int a;
    int b;
    int w;
    bool operator < (const E& rhs){//通过边长进行排序
        return this->w < rhs.w;
    }

}edg[N * 2];
int res = 0;

int n, m;
int cnt = 0;
int find(int a){//并查集找祖宗
    if(p[a] != a) p[a] = find(p[a]);
    return p[a];
}
void klskr(){
    for(int i = 1; i <= m; i++)//依次尝试加入每条边
    {
        int pa = find(edg[i].a);// a 点所在的集合
        int pb = find(edg[i].b);// b 点所在的集合
        if(pa != pb){//如果 a b 不在一个集合中
            res += edg[i].w;//a b 之间这条边要
            p[pa] = pb;// 合并a b
            cnt ++; // 保留的边数量+1
        }
    }
}
int main()
{

    cin >> n >> m;
    for(int i = 1; i <= n; i++) p[i] = i;//初始化并查集
    for(int i = 1; i <= m; i++){//读入每条边
        int a, b , c;
        cin >> a >> b >>c;
        edg[i] = {a, b, c};
    }
    sort(edg + 1, edg + m + 1);//按边长排序
    klskr();
    //如果保留的边小于点数-1,则不能连通
    if(cnt < n - 1) {
        cout<< "impossible";
        return 0;
    }
    cout << res;
    return 0;
}

作者:Hasity
链接:https://www.acwing.com/solution/content/104383/
来源:AcWing

染色法

什么叫二分图

有两顶点集且图中每条边的的两个顶点分别位于两个顶点集中,每个顶点集中没有边直接相连接!

说人话的定义:图中点通过移动能分成左右两部分,左侧的点只和右侧的点相连,右侧的点只和左侧的点相连。

染色法
将所有点分成两个集合,使得所有边只出现在集合之间,就是二分图
二分图:一定不含有奇数环,可能包含长度为偶数的环, 不一定是连通图

如果判断一个图是不是二分图?

开始对任意一未染色的顶点染色。

判断其相邻的顶点中,若未染色则将其染上和相邻顶点不同的颜色。

若已经染色且颜色和相邻顶点的颜色相同则说明不是二分图,若颜色不同则继续判断。

bfs和dfs可以搞定!

例题:染色法判定二分图

给定一个 n个点 m 条边的无向图,图中可能存在重边和自环。

请你判断这个图是否是二分图。

输入格式

第一行包含两个整数 n和 m。

接下来 m行,每行包含两个整数 u 和 v,表示点 u和点 v之间存在一条边。

输出格式

如果给定图是二分图,则输出 Yes,否则输出 No

数据范围

1≤n,m≤10的5次方

输入样例:
4 4
1 3
1 4
2 3
2 4
输出样例:
Yes

小模板:

时间复杂度是 O(n+m), n表示点数,m表示边数
int n;      // n表示点数
int h[N], e[M], ne[M], idx;     // 邻接表存储图
int color[N];       // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色

// 参数:u表示当前节点,c表示当前点的颜色
bool dfs(int u, int c)
{
    color[u] = c;
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (color[j] == -1)
        {
            if (!dfs(j, !c)) return false;
        }
        else if (color[j] == c) return false;
    }

    return true;
}

bool check()
{
    memset(color, -1, sizeof color);
    bool flag = true;
    for (int i = 1; i <= n; i ++ )
        if (color[i] == -1)
            if (!dfs(i, 0))
            {
                flag = false;
                break;
            }
    return flag;
}


作者:yxc
链接:https://www.acwing.com/blog/content/405/
来源:AcWing

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 100010 * 2;   //无向图乘2
int e[N], ne[N], idx;//邻接表存储图
int h[N];
int color[N];//保存各个点的颜色,0 未染色,1 是红色,2 是黑色
int n, m;//点和边

void add(int a, int b)//邻接表插入点和边
{
    e[idx] = b, ne[idx]= h[a], h[a] = idx++;
}

bool dfs(int u, int c)//深度优先遍历
{
    color[u] = c;//u的点成 c 染色

    //遍历和 u 相邻的点
    for(int i = h[u]; i!= -1; i = ne[i])
    {
        int b = e[i];                   
        if(!color[b])//相邻的点没有颜色,则递归处理这个相邻点
        {
            if(!dfs(b, 3 - c)) return false;//(3 - 1 = 2, 如果 u 的颜色是2,则和 u 相邻的染成 1)
                                            //(3 - 2 = 1, 如果 u 的颜色是1,则和 u 相邻的染成 2)
        }
        else if(color[b] && color[b] != 3 - c)//如果已经染色,判断颜色是否为 3 - c
        {                                     
            return false;//如果不是,说明冲突,返回                   
        }
    }
    return true;
}

int main()
{
    memset(h, -1, sizeof h);//初始化邻接表
    cin >> n >> m;
    for(int i = 1; i <= m; i++)//读入边
    {
        int a, b;
        cin >> a >> b;
        add(a, b), add(b, a);
    }
    for(int i = 1; i <= n; i++)//遍历点
    {
        if(!color[i])//如果没染色
        {
            if(!dfs(i, 1))//染色该点,并递归处理和它相邻的点
            {
                cout << "No" << endl;//出现矛盾,输出NO 
                return 0;
            }

        }
    }
    cout << "Yes" << endl;//全部染色完成,没有矛盾,输出YES
    return 0;
}


作者:Hasity
链接:https://www.acwing.com/solution/content/105874/
来源:AcWing

匈牙利算法

匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。匈牙利算法是基于Hall定理中充分性证明的思想,它是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法。

要了解匈牙利算法必须先理解下面的概念:

匹配:在图论中,一个「匹配」是一个边的集合,其中任意两条边都没有公共顶点。

最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。

下面是一些补充概念:

完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。

交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边…形成的路径叫交替路。

增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替 路称为增广路(agumenting path)。

例题:二分图的最大匹配

给定一个二分图,其中左半部包含 n1个点(编号 1∼n1),右半部包含 n2个点(编号 1∼n2),二分图共包含 m 条边。

数据保证任意一条边的两个端点都不可能在同一部分中。

请你求出二分图的最大匹配数。

二分图的匹配:给定一个二分图 G,在 G的一个子图 M 中,M的边集 {E} 中的任意两条边都不依附于同一个顶点,则称 M是一个匹配。

二分图的最大匹配:所有匹配中包含边数最多的一组匹配被称为二分图的最大匹配,其边数即为最大匹配数。

输入格式

第一行包含三个整数 n1、 n2 和 m。

接下来 m行,每行包含两个整数 u和 v,表示左半部点集中的点 u 和右半部点集中的点 v 之间存在一条边。

输出格式

输出一个整数,表示二分图的最大匹配数。

数据范围

1≤n1,n2≤500
1≤u≤n1,
1≤v≤n2
1≤m≤10的5次方

输入样例:
2 2 4
1 1
1 2
2 1
2 2
输出样例:
2

小模板:

时间复杂度是 O(nm), n表示点数,m表示边数
int n1, n2;     // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx;     // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N];       // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N];     // 表示第二个集合中的每个点是否已经被遍历过

bool find(int x)
{
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            st[j] = true;
            if (match[j] == 0 || find(match[j]))
            {
                match[j] = x;
                return true;
            }
        }
    }

    return false;
}

// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
    memset(st, false, sizeof st);
    if (find(i)) res ++ ;
}

作者:yxc
链接:https://www.acwing.com/blog/content/405/
来源:AcWing

#include<iostream>
#include <cstring>
#include<algorithm>
using namespace std;
// 邻接表存储图
int n1, n2, m;
int h[500], e[100010],ne[100010], idx = 0;
//st 标记是否递归找过, match[x]:和 x 编号的男生的编号
int st[510], match[510];
//存图函数
void add(int a, int b){   //插入
    e[idx] = b, ne[idx] = h[a]; h[a] = idx++;
}
//递归找可以匹配的点
bool find(int x){
    // 和各个点尝试能否匹配
    for(int i = h[x]; i != -1; i = ne[i]){
        int b = e[i];
        if(!st[b]){//打标记
            st[b] = 1;
            // 当前尝试点没有被匹配或者和当前尝试点匹配的那个点可以换另一个匹配
            if(match[b] == 0 || find(match[b])){
                // 和当前尝试点匹配在一起
                match[b] = x;
                return true;
            }
        }
    }
    return false;
}

int main(){
    memset(h, -1, sizeof h);
    cin >> n1 >> n2 >> m;
    // 保存图,因为只从一遍找另一边,所以该无向图只需要存储一个方向
    for(int i = 0; i < m; i++){
        int a, b;
        cin >> a >> b;
        add(a, b);
    }
    int res = 0;  //存匹配的数量
    //为各个点找匹配
    for(int i = 1; i <= n1; i++){
        memset(st, 0, sizeof st);  //清空,表示还没有考虑过
        //找到匹配
        if(find(i)) res++;
    }
    cout << res;
    return 0;
}
时间复杂度:对于左侧每个点,最多去尝试右侧点的个数次,所以是:o(n * m)

作者:Hasity
链接:https://www.acwing.com/solution/content/179030/
来源:AcWing

end__________________________________________________________________________

  • 16
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
鲁斯卡尔(kruskal)算法普利(prim)算法是两种常用的最小生成树算法。 鲁斯卡尔算法是一种贪心算法,用于寻找一个连通图的最小生成树。它的基本思想是从边集合中选择权值最小的边,并且保证选择的边不会构成环。具体步骤如下: 1. 将图的所有边按照权值从小到大进行排序。 2. 依次从排序后的边集合中选择权值最小的边,并判断选择该边是否会构成环。 3. 如果选择的边不会构成环,则将该边加入最小生成树的边集合中。 4. 重复步骤3,直到最小生成树的边数等于图的顶点数减一,或者所有边都被考虑过。 普利算法也是一种贪心算法,用于寻找一个连通图的最小生成树。它的基本思想是从一个起始顶点开始,每次选择与当前最小生成树相连的权值最小的边,并加入最小生成树。具体步骤如下: 1. 随机选择一个起始顶点作为最小生成树的起点。 2. 在当前最小生成树与其它顶点之间的边中,选择权值最小的边,并将该边加入最小生成树的边集合中。 3. 将新加入的边的另一个顶点作为当前最小生成树的一个新顶点,并重复步骤2,直到最小生成树包含图的所有顶点。 两种算法都可以用来求解最小生成树问题,但它们的具体实现细节有所不同。一般来说,鲁斯卡尔算法更适用于稀疏图(边数相对顶点数较少),而普利算法更适用于稠密图(边数接近顶点数平方)。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值