牛顿法和最优化
牛顿法最早的应用是求解方程的根,先来张直观的动图说明求解过程:
开始时,先找一个离f(x)零点比较近的点x0,然后做出穿过(x0,f(x0)),且斜率为f(x0)’的直线(即f(x)在x0处的切线),该直线与x轴交点的位置将比x0更接近f(x)零点;
然后重复上一步的操作,这样得到的f(x)的切线与x轴交点将会离f(x)零点越来越近,当误差或迭代次数达到一定条件,我们就得到了满足需要精度的f(x)=0解。
下一个点与当前点的关系满足:
Xn+1 = xn - f(xn)/f’(xn) 【1】
*
原创
2021-03-15 10:29:02 ·
383 阅读 ·
0 评论