里德 - 所罗门码错误距离计算与自私并行作业调度协调机制
里德 - 所罗门码错误距离计算
在编码理论中,里德 - 所罗门码的错误距离计算是一个重要的研究方向。之前已有一些相关的研究成果。
-
已有命题
- 命题 5 :设 $r \geq 1$ 为整数,对于任意接收字 $u \in F_q^q$,$r \leq d := \text{deg} u - k \leq q - 1 - k$。若 $q > \max\left(2\left\lfloor\frac{k + r}{2}\right\rfloor + d, d^2 + \epsilon\right)$ 且 $k > \left(\frac{2}{\epsilon + 1}\right)d + 2r + \frac{4}{\epsilon} + 2$(其中 $\epsilon > 0$ 为常数),则 $d(u, C_q) \leq q - k - r$。
- 命题 6 :设 $u \in F_q^q$ 使得 $1 \leq d := \text{deg}(u) - k \leq q - 1 - k$。假设 $q > \max ((k + 1)^2, 14d^2 + \epsilon)$ 且 $k > d\left(\frac{2}{\epsilon + 1}\right)$(其中 $\epsilon > 0$ 为常数),则 $d(u, C_q) < q - k$,即 $u$ 不是深洞。但这些结果大多只给出了错误距离的
超级会员免费看
订阅专栏 解锁全文
616

被折叠的 条评论
为什么被折叠?



