数据分析之统计分析基础(5)


概率分布

分布:一个变量取值的任意集合。分为离散型概率分布连续型概率分布两种。
离散型随机变量:可以取有限多个数值或无限可数多个数值的随机变量。
连续型随机变量:可以在某一区间或多个区间内任意取值的随机变量。
随机变量的概率分布(probability distribution)是描述随机变量取不同值的概率。

离散型概率分布

前言

数学期望:对随机变量中心位置的一种度量。
E ( X ) = μ = ∑ x f ( x ) E(X)=\mu=\sum{xf(x)} E(X)=μ=xf(x)
方差:描述随机变量取值的变异性。
V a r ( X ) = σ 2 = ∑ ( x − μ ) 2 f ( x ) Var(X)=\sigma^2=\sum{(x-\mu)^2f(x)} Var(X)=σ2=(xμ)2f(x)
标准差:度量了数据与数据中心的数学期望的距离。
σ = V a r ( x ) \sigma=\sqrt{Var(x)} σ=Var(x)
通用公式 E ( a X + b ) = a E ( X ) + b E(aX+b)=aE(X)+b E(aX+b)=aE(X)+b V a r ( a X + b ) = a 2 V a r ( X ) Var(aX+b)=a^2Var(X) Var(aX+b)=a2Var(X)
独立观测值
如果 x 1 , x 2 , … , x n x_1,x_2,\dots,x_n x1,x2,,xn是随机变量 x x x的独立观测值,则 E ( x 1 + x 2 + ⋯ + x n ) = n E ( X ) E(x_1+x_2+\dots+x_n)=nE(X) E(x1+x2++xn)=nE(X) V a r ( x 1 + x 2 + ⋯ + x n ) = n V a r ( X ) Var(x_1+x_2+\dots+x_n)=nVar(X) Var(x1+x2++xn)=nVar(X)
X X X Y Y Y是独立随机变量 E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y) E ( X − Y ) = E ( X ) − E ( Y ) E(X-Y)=E(X)-E(Y) E(XY)=E(X)E(Y) V a r ( X + Y ) = V a r ( X ) + V a r ( Y ) Var(X+Y)=Var(X)+Var(Y) Var(X+Y)=Var(X)+Var(Y) V a r ( X − Y ) = V a r ( X ) + V a r ( Y ) Var(X-Y)=Var(X)+Var(Y) Var(XY)=Var(X)+Var(Y)

离散均匀分布(Uniform Distribution)

假设 X X X k k k个取值: x 1 , x 2 , … , x k x_1,x_2,\dots,x_k x1,x2,,xk则均匀分布的概率为: P ( X = x i ) = 1 k P(X=x_i)=\frac{1}{k} P(X=xi)=k1

两点分布(伯努利分布,Bernoulli Distribution)

如果随机变量 X X X只取0和1两个值,并且相应的概率为: P ( x ) = p x ( 1 − p ) 1 − x = { p , x = 1 1 − p , x = 0 P(x)=p^x(1-p)^1-x= \begin{cases} p,x=1 \\ 1-p,x=0 \end{cases} P(x)=px(1p)1x={p,x=11p,x=0
则称随机变量 X X X服从参数为 p p p的伯努利分布。
E ( X ) = p E(X)=p E(X)=p E ( X 2 ) = p E(X^2)=p E(X2)=p V a r ( X ) = p ( 1 − p ) Var(X)=p(1-p) Var(X)=p(1p)

二项分布(Binomial Distribution)

二项分布是多次伯努利分布实验的概率分布。 n n n次试验, j j j次成功为1,二项分布为:
P ( X = k ) = C n k p k ( 1 − p ) n − k , C n k = n ! k ! ( n − k ) ! P(X=k)=C^k_np^k(1-p)^{n-k},C^k_n=\frac{n!}{k!(n-k)!} P(X=k)=Cnkpk(1p)nk,Cnk=k!(nk)!n! E ( X ) = n p E(X)=np E(X)=np V a r ( X ) = n p ( 1 − p ) Var(X)=np(1-p) Var(X)=np(1p)

泊松分布(Poisson Distribution)

泊松分布和指数分布:10分钟教程
泊松分布就是描述某段时间内,事件具体的发生概率。泊松分布的公式可以从二项分布推断出来。
假设已知事件在单位时间(或者单位面积)内发生的平均次数为 λ \lambda λ,则泊松分布描述了:事件在单位时间(或者单位面积)内发生的具体次数为 k k k的概率。
P ( X = k ) = λ k k ! e − λ , k = 0 , 1 , … P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda},k=0,1,\dots P(X=k)=k!λkeλ,k=0,1, E ( X ) = λ E(X)=\lambda E(X)=λ V a r ( X ) = λ Var(X)=\lambda Var(X)=λ

超几何分布(Hypergeometric Distribution)

超几何分布是统计学上一种离散概率分布。它描述了从有限 N N N个物件(其中包含 M M M个指定种类的物件)中抽出 n n n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。超几何分布中的参数是 N N N, M M M , n n n,上述超几何分布记作 X   H ( n , M , N ) X~H(n,M,N) X H(n,M,N). P ( X = k ) = C M k C N − M n − k C N n , k = 0 , 1 , 2 , … , m i n ( n , M ) P(X=k)=\frac{C^k_MC^{n-k}_{N-M}}{C^n_N},k=0,1,2,\dots,min(n,M) P(X=k)=CNnCMkCNMnk,k=0,1,2,,min(n,M) E ( X ) = n M N E(X)=\frac{nM}{N} E(X)=NnM v a r ( X ) = n M N ( 1 − M N ) N − n N − 1 var(X)=\frac{nM}{N}(1-\frac{M}{N})\frac{N-n}{N-1} var(X)=NnM(1NM)N1Nn

连续型概率分布

数学期望 E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X)=\int_{- \infty}^{+ \infty}{xf(x)}dx E(X)=+xf(x)dx

连续均匀分布(Uniform Distribution)

公式有时间再补充

假设 X X X [ a , b ] [a,b] [a,b]上均匀分布,则其
概率密度函数为: p ( x ) = { 1 b − a , a ≤ x ≤ b 0 , o t h e r p(x)= \left\{\begin{aligned} \frac{1}{b-a},a\leq x \leq b\\ 0,other \end{aligned}\right. p(x)=ba1,axb0,other

分布函数 f ( x ) = { 0 , x < a x − a b − a , a ≤ x < b 1 , x ≥ b f(x)= \left\{\begin{aligned} 0,x<a \\ \frac{x-a}{b-a},a\leq x < b\\ 1,x \geq b \end{aligned}\right. f(x)=0,x<abaxa,ax<b1,xb

数学期望 E ( X ) = a + b 2 E(X)=\frac{a+b}{2} E(X)=2a+b

方差 V a r ( x ) = ( b − a ) 2 2 Var(x)=\frac{(b-a)^2}{2} Var(x)=2(ba)2

指数分布

概率密度函数 p ( x ) = { λ e − λ x , x ≥ 0 0 , x < 0 p(x)= \left\{\begin{aligned} \lambda e^{-\lambda x},x \geq 0\\ 0,x<0 \end{aligned}\right. p(x)={λeλx,x00,x<0

分布函数 F ( x ) = { 1 − λ e − λ x , x ≥ 0 0 , x < 0 F(x)= \left\{\begin{aligned} 1-\lambda e^{-\lambda x},x \geq 0\\ 0,x<0 \end{aligned}\right. F(x)={1λeλx,x00,x<0

数学期望 E ( X ) = 1 λ E(X)=\frac{1}{\lambda} E(X)=λ1

方差 V a r ( X ) = 1 λ 2 Var(X)=\frac{1}{\lambda ^2} Var(X)=λ21

正态分布(Normal Distribution,高斯分布Gaussian Distribution)

在求二项分布的渐近公式中得到。正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
一维正态分布:
概率密度函数 p ( x ) = 1 2 π σ e x p ( − ( x − μ ) 2 2 σ 2 ) p(x)=\frac{1}{\sqrt{2\pi}\sigma}exp(-\frac{(x-\mu)^2}{2\sigma^2}) p(x)=2π σ1exp(2σ2(xμ)2), μ \mu μ为位置参数,是数学期望 σ \sigma σ是尺度参数,是标准差。则 X ∼ N ( μ , σ 2 ) X\sim N(\mu, \sigma^2) XN(μ,σ2).
标准正态分布:
概率密度函数 p ( x ) = 1 2 π e x p ( − x 2 2 ) p(x)=\frac{1}{\sqrt{2\pi}}exp(-\frac{x^2}{2}) p(x)=2π 1exp(2x2),此时 μ = 0 , σ = 1 \mu=0, \sigma=1 μ=0,σ=1
定理:
X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2),则 Y = X − μ σ ∼ N ( 0 , 1 ) Y=\frac{X-\mu}{\sigma}\sim N(0,1) Y=σXμN(0,1)

伽马分布

伽马函数 Γ = ∫ 0 ∞ x α − 1 e − x d x , α > 0 \Gamma=\int_{0}^{\infty}{x^{\alpha-1}e^{-x}}dx,\alpha>0 Γ=0xα1exdx,α>0

性质
1、 Γ ( 1 ) = 1 , Γ ( 1 2 ) = π \Gamma(1)=1,\Gamma(\frac{1}{2})=\sqrt{\pi} Γ(1)=1,Γ(21)=π

2、 Γ ( α + 1 ) = α Γ ( Γ ) \Gamma(\alpha+1)=\alpha\Gamma(\Gamma) Γ(α+1)=αΓ(Γ), 对于自然数 n n n,有 Γ ( n ) = n ! . \Gamma(n)=n!. Γ(n)=n!.

3、 ∫ 0 ∞ x α − 1 e − λ x d x = Γ ( α ) / λ α \int_{0}^{\infty}{x^{\alpha-1}e^{-\lambda x}}dx=\Gamma(\alpha)/\lambda^{\alpha} 0xα1eλxdx=Γ(α)/λα

概率密度函数 p ( x ) = { λ α Γ ( α ) x α − 1 e − λ x , x > 0 0 , x ≤ 0 p(x)= \left\{\begin{aligned} \frac{\lambda ^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x},x > 0\\ 0,x\leq0 \end{aligned}\right. p(x)=Γ(α)λαxα1eλx,x>00,x0 ,其中 α > 0 \alpha>0 α>0称为形状参数, λ > 0 \lambda>0 λ>0称为尺度参数。

数学期望 E ( X ) = α λ E(X)=\frac{\alpha}{\lambda} E(X)=λα

指数分布的关系: G a ( 1 , λ ) Ga(1,\lambda) Ga(1,λ)为指数分布。

卡方分布的关系: G a ( n 2 , 1 2 ) Ga(\frac{n}{2},\frac{1}{2}) Ga(2n,21) n n n为自然数称为自由度为 n n n的卡方分布。

贝塔分布

贝塔函数 β ( a , b ) = ∫ 0 1 x α − 1 ( 1 − x ) b − 1 d x , a > 0 , b > 0 \beta(a,b)=\int_{0}^{1}{x^{\alpha-1}(1-x)^{b-1}}dx,a>0,b>0 β(a,b)=01xα1(1x)b1dx,a>0,b>0.

性质
β ( a , b ) = β ( b , a ) \beta(a,b)=\beta(b,a) β(a,b)=β(b,a)

β ( a , b ) = Γ ( a ) Γ ( b ) Γ ( a + b ) \beta(a,b)=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} β(a,b)=Γ(a+b)Γ(a)Γ(b)

密度函数 p ( x ) = Γ ( a + b ) Γ ( a ) Γ ( b ) x α − 1 ( 1 − x ) b − 1 , 0 ≤ x ≤ 1 p(x)=\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{\alpha-1}(1-x)^{b-1},0\leq x \leq 1 p(x)=Γ(a)Γ(b)Γ(a+b)xα1(1x)b1,0x1,其中 a a a b b b都是形状参数,且都为正。 X ∼ B e ( a , b ) X\sim Be(a,b) XBe(a,b).

数学期望 E ( X ) = a a + b E(X)=\frac{a}{a+b} E(X)=a+ba

均匀分布的关系: B e ( 1 , 1 ) Be(1,1) Be(1,1)

卡方分布

自由度为 n n n χ 2 \chi^2 χ2分布的密度函数: p ( x ) = 1 Γ ( n 2 ) 2 n 2 x n 2 − 1 e − x 2 , x > 0 p(x)=\frac{1}{\Gamma(\frac{n}{2})2^\frac{n}{2}}x^{\frac{n}{2}-1}e^{-\frac{x}{2}},x>0 p(x)=Γ(2n)22n1x2n1e2x,x>0

数学期望 E ( X ) = n E(X)=n E(X)=n

t分布(t-distribution)

如果 X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1), Y ∼ χ 2 ( n ) Y\sim \chi^2(n) Yχ2(n) , 且 X X X Y Y Y独立,则 t = X Y n t=\frac{X}{\sqrt{\frac{Y}{n}}} t=nY X的分布称为自由度为 n n n t t t分布。记为 t ( n ) . t(n). t(n).

F分布

如果 X ∼ χ 2 ( n ) X\sim \chi^2(n) Xχ2(n), Y ∼ χ 2 ( m ) Y\sim \chi^2(m) Yχ2(m), 且 X X X Y Y Y独立,则 F = X n Y m F=\frac{\frac{X}{n}}{\frac{Y}{m}} F=mYnX的分布称为自由度为 n n n m m m F F F分布。记为 F ( n , m ) F(n,m) F(n,m).

拉普拉斯分布

拉普拉斯分布
密度函数: p ( x ∣ μ , λ ) = 1 2 λ e − ∣ x − μ ∣ λ p(x|\mu,\lambda)=\frac{1}{2\lambda}e^{-\frac{|x-\mu|}{\lambda}} p(xμ,λ)=2λ1eλxμ,其中 μ \mu μ为位置参数; λ \lambda λ是尺度参数。

数学期望: E ( X ) = μ E(X)=\mu E(X)=μ

方差: V a r ( X ) = 2 λ 2 Var(X)=2\lambda^{2} Var(X)=2λ2

拉普拉斯分布的密度函数,可以看作是两个指数分布函数的概率密度“背靠背”拼接在一起。
性质:
1、如果 X ∼ E x p ( λ ) , Y ∼ E x p ( μ ) X\sim Exp(\lambda),Y\sim Exp(\mu) XExp(λ),YExp(μ),那么 λ X − μ Y ∼ L a p l a c e ( 0 , 1 ) \lambda X - \mu Y\sim Laplace(0,1) λXμYLaplace(0,1)

2、如果 X , Y ∼ U ( 0 , 1 ) X,Y\sim U(0,1) X,YU(0,1),那么 l n X Y ∼ L a p l a c e ( 0 , 1 ) ln\frac{X}{Y}\sim Laplace(0,1) lnYXLaplace(0,1)

3、如果 X i ∼ L a p l a c e ( μ , λ ) X_{i}\sim Laplace(\mu,\lambda) XiLaplace(μ,λ),那么 2 λ ∑ i = 1 n ∣ X i − μ ∣ ∼ c h i 2 ( 2 n ) \frac{2}{\lambda}\sum_{i=1}^{n}{|X_i-\mu|}\sim chi^{2}(2n) λ2i=1nXiμchi2(2n)

4、如果 X , Y ∼ L a p l a c e ( μ , λ ) X,Y\sim Laplace(\mu, \lambda) X,YLaplace(μ,λ),那么 ∣ X − μ ∣ ∣ Y − μ ∣ ∼ F ( 2 , 2 ) \frac{|X-\mu|}{|Y-\mu|}\sim F(2,2) YμXμF(2,2)

狄利克雷分布

浅谈狄利克雷分布——Dirichlet Distribution
Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)

多元贝塔分布,狄利克雷分布是贝塔分布的扩展。定义多元连续随机变量 θ = { θ 1 , θ 2 , … , θ k } \theta=\{\theta_1,\theta_2,\dots,\theta_k\} θ={θ1,θ2,,θk}的概率密度函数为 p ( θ ∣ α ) = Γ ( ∑ i = 1 k α i ) ∏ i = 1 k Γ ( α i ) ∏ i = 1 k θ i α i − 1 , α i > 0 , i = 1 , 2 , … , k p(\theta|\alpha)=\frac{\Gamma(\sum_{i=1}^k{\alpha_i})}{\prod_{i=1}^k{\Gamma(\alpha_i)}}\prod_{i=1}^k{\theta_i^{\alpha_i-1}},\alpha_i>0,i=1,2,\dots,k p(θα)=i=1kΓ(αi)Γ(i=1kαi)i=1kθiαi1,αi>0,i=1,2,,k

其中 ∑ i = 1 k θ i = 1 , θ i ≥ 0 \sum_{i=1}^k{\theta_i}=1,\theta_i\geq 0 i=1kθi=1,θi0,则称随机变量 θ \theta θ服从参数为 α \alpha α的狄利克雷分布,记作 θ ∼ D i r ( α ) \theta\sim Dir(\alpha) θDir(α)

定义
B ( α ) = Γ ( ∑ i = 1 k α i ) ∏ i = 1 k Γ ( α i ) B(\alpha)=\frac{\Gamma(\sum_{i=1}^k{\alpha_i})}{\prod_{i=1}^k{\Gamma(\alpha_i)}} B(α)=i=1kΓ(αi)Γ(i=1kαi)

B ( α ) B(\alpha) B(α)称为多元贝塔函数或扩展贝塔函数,其积分表示为: ∫ ∏ i = 1 k θ i α i − 1 d θ \int{\prod_{i=1}^{k}{\theta_i^{\alpha_i-1}}}d\theta i=1kθiαi1dθ

狄拉克分布

在这里插入图片描述

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值