本文列举了常见的离散分布,关于它们的背景、概率分布列、数学期望与方差,以及与之相关的一些重要性质;比如几何分布的无记忆性、 二项分布的泊松近似、超几何分布的二项近似。。。。可作为离散分布的知识速查表。
目录
1. 二项分布b(n,p)
- 背景:在n重伯努利实验中成功的次数服从二项分布b(n,p),其中p为一次伯努利实验中成功发生的概率,
.
- 概率分布列:
- n=1 时,二项分布退化为二点分布【0-1分布】
- 二项分布b(n,p) 的数学期望为
, 方差为
- 若
,则
, 其中
是在n重伯努利实验中失败的次数
2. 泊松分布
- 背景:单位时间【或单位面积、单位产品等】上稀有事件【不经常发生的事件】发生的次数
- 概率分布列:
-
- 二项分布的泊松近似(泊松定理)
在n重伯努利实验中,记事件A在一次伯努利实验中发生的概率为(与试验次数n有关),如果当
时,有
, 则
3 超几何分布 
- 背景:从含有M个不合格产品的N个产品中,不放回地随机抽取n个,则其中含有的不合格品的个数服从超几何分布。
- 概率分布列:
,其中
且
均为正整数
- 期望与方差:
- 超几何分布的二项近似:当
, 超几何分布
可用二项分布
近似,即
, 其中
.
- 实际应用:当批量N较大、而抽出样品数n较小时,不返回抽样可看作返回抽样的近似。
4 几何分布 
- 背景:在伯努利试验序列中,成功事件A首次出现时的试验次数, p为每次试验中事件A发生的概率
- 概率分布列:
- 期望与方差:
- 几何分布的无记忆性
若 ,则对任意正整数m与n有:
5 负二项分布 / 巴斯卡分布 
- 背景:在伯努利试验序列中,成功事件A第r次出现时的试验次数,
- 概率分布列:
- 期望与方差:
- 几何分布与负二项分布的关系: r=1时的负二项分布为几何分布,即
负二项分布的随机变量可以表示为r个独立同分布的几何分布随机变量之和,即
若 ,则
6 常用离散分布表
参考资料: