第五章 相似矩阵及二次型 第一二节 向量的内积、长度及正交性/方阵的特征值与特征向量

§5.1 向量的内积、长度及正交性
§5.2 方阵的特征值与特征向量

5.1 向量的内积、长度及正交性

  设有
x = ( x 1 x 2 ⋮ x n ) ,    y = ( y 1 y 2 ⋮ y n ) x= \left( \begin{matrix} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{matrix} \right),\ \ y= \left( \begin{matrix} y_{1}\\ y_{2}\\ \vdots\\ y_{n} \end{matrix} \right) x=x1x2xn,  y=y1y2yn

[ x , y ] = x 1 y 1 + x 2 y 2 + ⋯ + x n y n [x,y]=x_{1}y_{1}+x_{2}y_{2}+\cdots+x_{n}y_{n} [x,y]=x1y1+x2y2++xnyn
[ x , y ] [x,y] [x,y]称为向量 x x x和向量 y y y内积

性质

1. [ x , y ] = [ y , x ] [x,y]=[y,x] [x,y]=[y,x];
2. [ λ x , y ] = λ [ x , y ] [\lambda x,y]=\lambda[x,y] [λx,y]=λ[x,y];
3. [ x + y , z ] = [ x , z ] + [ y , z ] [x+y,z]=[x,z]+[y,z] [x+y,z]=[x,z]+[y,z];
4.当 x = 0 x=0 x=0时, [ x , x ] = 0 [x,x]=0 [x,x]=0;当 x ≠ 0 x\neq 0 x̸=0时, [ x , x ] > 0 [x,x]>0 [x,x]>0.

  令
∣ ∣ x ∣ ∣ = [ x , x ] = x 1 2 + x 2 2 + ⋯ + x n 2 , ||x||=\sqrt{[x,x]}=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}, x=[x,x] =x12+x22++xn2 ,
则称 ∣ ∣ x ∣ ∣ ||x|| x n n n维向量 x x x长度(或范数).

性质

1.非负性:当 x ≠ 0 x\neq 0 x̸=0时, ∣ ∣ x ∣ ∣ > 0 ||x||>0 x>0,当 x = 0 x= 0 x=0时, ∣ ∣ x ∣ ∣ = 0 ||x||=0 x=0;
2.齐次性: ∣ ∣ λ x ∣ ∣ = ∣ λ ∣ ∣ ∣ x ∣ ∣ ||\lambda x||=|\lambda|||x|| λx=λx;
3.三角不等式: ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ||x+y||\leq ||x||+||y|| x+yx+y.

定理

n n n维向量 a 1 , a 2 , ⋯   , a r a_{1},a_{2},\cdots,a_{r} a1,a2,,ar是一组两两正交的非零向量,则 a 1 , a 2 , ⋯   , a r a_{1},a_{2},\cdots,a_{r} a1,a2,,ar线性无关。
  设 n n n维向量 e 1 , e 2 , ⋯   , e r e_{1},e_{2},\cdots,e_{r} e1,e2,,er是向量空间 V ( v ∈ R n ) V(v\in R^{n}) V(vRn)的一个基,如果 e 1 , e 2 , ⋯   , e r e_{1},e_{2},\cdots,e_{r} e1,e2,,er两两正交,且都是单位向量,则称 e 1 , e 2 , ⋯   , e r e_{1},e_{2},\cdots,e_{r} e1,e2,,er V V V的一个规范正交基
  施密特正交化:找到一组两两正交的单位向量 e 1 , e 2 , ⋯   , e r e_{1},e_{2},\cdots,e_{r} e1,e2,,er,与基 a 1 , a 2 , ⋯   , a r a_{1},a_{2},\cdots,a_{r} a1,a2,,ar等价。
  如果 n n n阶矩阵 A A A满足:
A T A = E A^{T}A=E ATA=E
那么称 A A A正交矩阵,简称正交阵。

性质

1.若 A A A为正交矩阵,那么 A − 1 = A T A^{-1}=A^{T} A1=AT也是正交阵;
2.若 A A A B B B为正交矩阵,那么 A B AB AB也是正交阵。
  若 P P P为正交阵,则线性变换 y = P x y=Px y=Px称为正交变换

5.2 方阵的特征值与特征向量

  设 A A A n n n阶矩阵,如果数 λ \lambda λ n n n维非零列向量 x x x使关系式
(1) A x = λ x Ax=\lambda x\tag{1} Ax=λx(1)
成立,那么,这样的数 λ \lambda λ称为矩阵 A A A特征值,非零向量 x x x称为矩阵 A A A的对应的特征值 λ \lambda λ特征向量
( 1 ) (1) (1)式也可以写成
( A − λ E ) = 0 , (A-\lambda E)=0, (AλE)=0,

∣ a 11 − λ a 12 ⋯ a 1 n a 21 a 22 − λ ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n − λ ∣ = 0. \left| \begin{matrix} a_{11}-\lambda&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}-\lambda&\cdots&a_{2n}\\ \vdots&\vdots&&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}-\lambda \end{matrix} \right|=0. a11λa21an1a12a22λan2a1na2nannλ=0.
上式是以 λ \lambda λ为未知源的一元 n n n次方程,称为矩阵 A A A特征方程。其左端 ∣ A − λ E ∣ |A-\lambda E| AλE λ \lambda λ n n n次多项式,记做 f ( λ ) f(\lambda) f(λ),称为矩阵 A A A特征多项式

定理

λ 1 , λ 2 , ⋯   , λ m \lambda_{1},\lambda_{2},\cdots,\lambda_{m} λ1,λ2,,λm是方阵 A A A m m m个特征值, p 1 , p 2 , ⋯   , p m p_{1},p_{2},\cdots,p_{m} p1,p2,,pm依次是与之对应的特征向量,如果 λ 1 , λ 2 , ⋯   , λ m \lambda_{1},\lambda_{2},\cdots,\lambda_{m} λ1,λ2,,λm各不相等,则 p 1 , p 2 , ⋯   , p m p_{1},p_{2},\cdots,p_{m} p1,p2,,pm线性无关。

《线性代数》同济大学第五版笔记

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值