第六章 线性空间与线性变换 第一二三节 线性空间的定义与性质/维数、基与坐标/基变换与坐标变换

§6.1 线性空间的定义与性质
§6.2 维数、基与坐标
§6.3 基变换与坐标变换

6.1 线性空间的定义与性质

  设 V V V是一个非空集合, R R R是实数域。如果对于任意两个元素 α , β ∈ V \alpha,\beta\in V α,βV,总有惟一的一个元素 γ ∈ V \gamma\in V γV与之对应,称为 α \alpha α β \beta β的和,记作 γ = α + β \gamma=\alpha+\beta γ=α+β;又对于任一数 λ ∈ R \lambda\in R λR与任一元素 α ∈ V \alpha\in V αV,总有惟一的一个元素 δ ∈ V \delta\in V δV与之对应,称为 λ \lambda λ α \alpha α的积,记作 δ = λ α \delta = \lambda \alpha δ=λα;并且这两种运算满足以下八条运算规律(设 α , β , γ ∈ V ; λ , μ ∈ R \alpha,\beta,\gamma\in V;\lambda,\mu\in R α,β,γV;λ,μR):
1. α + β = β + α \alpha + \beta = \beta +\alpha α+β=β+α;
2. ( α + β ) + γ = α + ( β + γ ) (\alpha + \beta)+\gamma=\alpha+(\beta+\gamma) (α+β)+γ=α+(β+γ);
3.在 V V V中存在零元素 0 0 0;对任何 α ∈ V \alpha\in V αV,都有 α + 0 = α \alpha + 0 = \alpha α+0=α;
4.对任何 α ∈ V \alpha\in V αV,都有 α \alpha α的负元素 β ∈ V \beta\in V βV,使 α + β = 0 \alpha +\beta =0 α+β=0;
5. 1 α = α 1\alpha=\alpha 1α=α;
6. λ ( μ α ) = ( λ μ ) α \lambda(\mu\alpha)=(\lambda\mu)\alpha λ(μα)=(λμ)α;
7. ( λ + μ ) α = λ α + μ α (\lambda+\mu)\alpha=\lambda\alpha+\mu\alpha (λ+μ)α=λα+μα;
8. λ ( α + β ) = λ α + λ β \lambda(\alpha+\beta)=\lambda\alpha+\lambda\beta λ(α+β)=λα+λβ.
那么, V V V就称为(实数域 R R R上的)向量空间(或线性空间) V V V中的元素不论其本来的性质如何,统称为(实)向量。

性质

1.零元素是惟一的;
2.任一元素的负元素是惟一的, α \alpha α的负元素记作 − α -\alpha α;
3. 0 α = 0 ; ( − 1 ) α = − α ; λ 0 = 0 ; 0\alpha=0;(-1)\alpha=-\alpha;\lambda 0 =0; 0α=0;(1)α=α;λ0=0;
4.如果 λ α = 0 \lambda \alpha = 0 λα=0,则 λ = 0 \lambda=0 λ=0 α = 0 \alpha=0 α=0.

6.2 维数、基与坐标

  在线性空间 V V V中,如果存在 n n n个元素 α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn,满足:
1. α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn线性无关;
2. V V V中任一元素 α \alpha α总可由 α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn线性表示,
那么, α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn称为线性空间 V V V的一个 n n n称为线性空间 V V V维数。记作 V n V_{n} Vn.
V n = { α = x 1 α 1 + x 2 α 2 + ⋯ + x n α n ∣ x 1 , x 2 , ⋯   , x n ∈ R } V_{n}=\{\alpha=x_{1}\alpha_{1}+x_{2}\alpha_{2}+\cdots+x_{n}\alpha_{n}|x_{1},x_{2},\cdots,x_{n}\in R\} Vn={α=x1α1+x2α2++xnαnx1,x2,,xnR}
  设 α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn是线性空间 V n V_{n} Vn的一个基,对于任一元素 α ∈ V n \alpha\in V_{n} αVn,总有且仅有一组有序数 x 1 , x 2 , ⋯   , x n x_{1},x_{2},\cdots,x_{n} x1,x2,,xn使
α = x 1 α 1 + x 2 α 2 + ⋯ + x n α n \alpha=x_{1}\alpha_{1}+x_{2}\alpha_{2}+\cdots+x_{n}\alpha_{n} α=x1α1+x2α2++xnαn

x 1 , x 2 , ⋯   , x n x_{1},x_{2},\cdots,x_{n} x1,x2,,xn这组有序数就称为元素 α \alpha α α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn这个基下的坐标,并记作
α = ( x 1 , x 2 , ⋯   , x n ) T \alpha=(x_{1},x_{2},\cdots,x_{n})^{T} α=(x1,x2,,xn)T.
n n n维线性空间 V n V_{n} Vn中取定一个基 α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn,则 V n V_{n} Vn中的向量 α \alpha α n n n维数组向量空间 R n R^{n} Rn中的向量 ( x 1 , x 2 , ⋯   , x n ) T (x_{1},x_{2},\cdots,x_{n})^{T} (x1,x2,,xn)T之间就有一个一一对应的关系,且具有下列性质:
α ↔ ( x 1 , x 2 , ⋯   , x n ) T , β ↔ ( y 1 , y 2 , ⋯   , y n ) T \alpha \leftrightarrow (x_{1},x_{2},\cdots,x_{n})^{T},\beta \leftrightarrow (y_{1},y_{2},\cdots,y_{n})^{T} α(x1,x2,,xn)T,β(y1,y2,,yn)T,则
1. α + β ↔ ( x 1 , x 2 , ⋯   , x n ) T + ( y 1 , y 2 , ⋯   , y n ) T \alpha + \beta \leftrightarrow (x_{1},x_{2},\cdots,x_{n})^{T}+(y_{1},y_{2},\cdots,y_{n})^{T} α+β(x1,x2,,xn)T+(y1,y2,,yn)T;
2. λ α ↔ λ ( x 1 , x 2 , ⋯   , x n ) T \lambda\alpha \leftrightarrow \lambda(x_{1},x_{2},\cdots,x_{n})^{T} λαλ(x1,x2,,xn)T
也就是这个对应关系保持线性组合的对应, V n V_{n} Vn R n R^{n} Rn有相同的结构,即同构

6.3 基变换与坐标变换

同一元素在不同的基下有不同的坐标,不同的基与不同坐标之间的关系:
α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn β 1 , β 2 , ⋯   , β n \beta_{1},\beta_{2},\cdots,\beta_{n} β1,β2,,βn是线性空间 V n V_{n} Vn中的两个基
{ β 1 = p 11 α 1 + p 21 α 2 + ⋯ + p n 1 α n , β 2 = p 12 α 1 + p 22 α 2 + ⋯ + p n 2 α n , ⋯ ⋯ β n = p 1 n α 1 + p 2 n α 2 + ⋯ + p n n α n , \begin{cases} \beta_{1}=p_{11}\alpha_{1}+p_{21}\alpha_{2}+\cdots+p_{n1}\alpha_{n},\\ \beta_{2}=p_{12}\alpha_{1}+p_{22}\alpha_{2}+\cdots+p_{n2}\alpha_{n},\\ \cdots\cdots\\ \beta_{n}=p_{1n}\alpha_{1}+p_{2n}\alpha_{2}+\cdots+p_{nn}\alpha_{n},\\ \end{cases} β1=p11α1+p21α2++pn1αn,β2=p12α1+p22α2++pn2αn,βn=p1nα1+p2nα2++pnnαn,
α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn n n n个有序元素记作 ( α 1 , α 2 , ⋯   , α n ) (\alpha_{1},\alpha_{2},\cdots,\alpha_{n}) (α1,α2,,αn),
( β 1 , β 2 , ⋯   , β n ) = ( α 1 , α 2 , ⋯   , α n ) P (\beta_{1},\beta_{2},\cdots,\beta_{n})=(\alpha_{1},\alpha_{2},\cdots,\alpha_{n})P (β1,β2,,βn)=(α1,α2,,αn)P
称为基变换公式,矩阵 P P P称为由基 α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn到基 β 1 , β 2 , ⋯   , β n \beta_{1},\beta_{2},\cdots,\beta_{n} β1,β2,,βn过渡矩阵

定理

V n V_{n} Vn中的元素 α \alpha α,在基 α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn下的坐标为 ( x 1 , x 2 , ⋯   , x n ) T (x_{1},x_{2},\cdots,x_{n})^{T} (x1,x2,,xn)T,在基 β 1 , β 2 , ⋯   , β n \beta_{1},\beta_{2},\cdots,\beta_{n} β1,β2,,βn下的坐标为 ( x 1 ′ , x 2 ′ , ⋯   , x n ′ ) T (x'_{1},x'_{2},\cdots,x'_{n})^{T} (x1,x2,,xn)T.若两个基满足基变换公式,则有坐标变换公式
( x 1 x 2 ⋮ x n ) = P ( x 1 ′ x 2 ′ ⋮ x n ′ ) , ( x 1 ′ x 2 ′ ⋮ x n ′ ) = P − 1 ( x 1 x 2 ⋮ x n ) . \left( \begin{matrix} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{matrix} \right)=P \left( \begin{matrix} x'_{1}\\ x'_{2}\\ \vdots\\ x'_{n} \end{matrix} \right), \left( \begin{matrix} x'_{1}\\ x'_{2}\\ \vdots\\ x'_{n} \end{matrix} \right)=P^{-1} \left( \begin{matrix} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{matrix} \right). x1x2xn=Px1x2xn,x1x2xn=P1x1x2xn.

《线性代数》同济大学第五版笔记

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值